The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon ...The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon the energy conversion between the injected fuel and the friction together with the load. Both the theoretical and numerical results show that the vibration system of FPA is a nonlinear conservative autonomous system in one cycle. The FPA vibration is symmetric with constant amplitude when FPA is only driven by the compression pressure in the compression accumulator and that in the combustion chamber. When considering the friction and load, FPA could still achieve a stable vibration after a few cycles' adjustment whether the input energy is equal to the consumed energy or not. The vibration characteristics are different when FPA vibrates in the compression stroke and the expansion stroke, which is the unique feature of the single-piston HFPE.展开更多
The characteristics of a hybrid hydraulic vehicle driven by the hydraulic common rail propulsion system with a hydraulic free-piston engine and a hydraulic transformer were studied.A mathematical model of the propulsi...The characteristics of a hybrid hydraulic vehicle driven by the hydraulic common rail propulsion system with a hydraulic free-piston engine and a hydraulic transformer were studied.A mathematical model of the propulsion system was established and a control method of the propulsion system was proposed.Extensive simulation results of hybrid hydraulic vehicles with the hydraulic common rail propulsion system were presented.The hydraulic common rail propulsion system achieved the switch power control and the constant power propulsion.The control method based on the propulsion,break and speed limit requirement was verified.Our results showed that the hydraulic common rail propulsion system gained an ideal acceleration process.展开更多
基金Project(51275451)supported by the National Natural Science Foundation of ChinaProject(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China+1 种基金Project(2013CB035400)supported by the National Basic Research Program of ChinaProject(2011BAK03B09)supported by the National Key Technology R&D Program of China
文摘The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon the energy conversion between the injected fuel and the friction together with the load. Both the theoretical and numerical results show that the vibration system of FPA is a nonlinear conservative autonomous system in one cycle. The FPA vibration is symmetric with constant amplitude when FPA is only driven by the compression pressure in the compression accumulator and that in the combustion chamber. When considering the friction and load, FPA could still achieve a stable vibration after a few cycles' adjustment whether the input energy is equal to the consumed energy or not. The vibration characteristics are different when FPA vibrates in the compression stroke and the expansion stroke, which is the unique feature of the single-piston HFPE.
基金Supported by the National Ministry Fundamental Research Foundation of China(A2220060053)
文摘The characteristics of a hybrid hydraulic vehicle driven by the hydraulic common rail propulsion system with a hydraulic free-piston engine and a hydraulic transformer were studied.A mathematical model of the propulsion system was established and a control method of the propulsion system was proposed.Extensive simulation results of hybrid hydraulic vehicles with the hydraulic common rail propulsion system were presented.The hydraulic common rail propulsion system achieved the switch power control and the constant power propulsion.The control method based on the propulsion,break and speed limit requirement was verified.Our results showed that the hydraulic common rail propulsion system gained an ideal acceleration process.