期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Performance between the Hydraulic Gradient Method and the Perturbation Method for the Analysis of Water Supply Networks
1
作者 Iván Ayala Bizarro Elviz Quispe García +5 位作者 Marco Lopez Barrantes Freddy Marrero Saucedo Omar CaballeroSanchez Hugo Lujan Jeri Carlos Gaspar Paco Jorge Ortega Vargas 《Journal of Environmental Science and Engineering(A)》 2020年第6期217-226,共10页
The HGM(Hydraulic Gradient Method),it is used in most of the current commercial software,such as EPANET,WaterCAD,MikeNet,among others,the same that corresponds to an iterative method that depends on initial estimated ... The HGM(Hydraulic Gradient Method),it is used in most of the current commercial software,such as EPANET,WaterCAD,MikeNet,among others,the same that corresponds to an iterative method that depends on initial estimated parameters and programming structures that ensure convergence to obtain results with the highest precision,in addition to this the method makes use of non-linear equation systems.Likewise,the execution time for large extensions of water distribution networks is considerably high.On the other hand,the PM(Perturbation Method),is a new direct solution method,which makes use of principles of quantum mechanics to transform nonlinear equations into simpler linear systems.Obtaining a simple and robust optimization method that only requires simple and direct mathematical processes.Using the MathCad and Python programming languages as a verification tool,multiple tests were carried out,the results for the hydraulic parameters showing that the flow rates and pressures obtained by the HGM and the PM are extremely similar,in the same way the execution time(time run)have been 77.09%favorable to the PM.In other words,the PM presents efficiency to estimate the hydraulic characteristics such as the pressures at the nodes and the velocities in the pipes of the drinking water distribution networks. 展开更多
关键词 Perturbation method quantum mechanics hydraulic gradient
下载PDF
Physically-based approach to analyze rainfall-triggered landslide using hydraulic gradient as slide direction
2
作者 Qi-hua RAN1,Dan-yang SU1,Qun QIAN1,Xu-dong FU2,Guang-qian WANG1,2,Zhi-guo HE3 (1Department of Hydraulic Engineering,Zhejiang University,Hangzhou 310058,China) (2State Key Laboratory of Hydroscience and Engineering,Tsinghua University,Beijing 100084,China) (3Department of Ocean Science and Engineering,Zhejiang University,Hangzhou 310058,China) 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第12期943-957,共15页
An infinite slope stability numerical model driven by the comprehensive physically-based integrated hydrology model(InHM) is presented.In this approach,the failure plane is assumed to be parallel to the hydraulic grad... An infinite slope stability numerical model driven by the comprehensive physically-based integrated hydrology model(InHM) is presented.In this approach,the failure plane is assumed to be parallel to the hydraulic gradient instead of the slope surface.The method helps with irregularities in complex terrain since depressions and flat areas are allowed in the model.The present model has been tested for two synthetic single slopes and a small catchment in the Mettman Ridge study area in Oregon,United States,to estimate the shallow landslide susceptibility.The results show that the present approach can reduce the simulation error of hydrological factors caused by the rolling topography and depressions,and is capable of estimating spatial-temporal variations for landslide susceptibilities at simple slopes as well as at catchment scale,providing a valuable tool for the prediction of shallow landslides. 展开更多
关键词 Shallow landslide Infinite slope stability model hydraulic gradient Physically-based hydrology model Integrated hydrology model(InHM)
原文传递
Nonlinear Flow Properties of Newtonian Fluids through Rough Crossed Fractures
3
作者 Zhenguo Liu Shuchen Li +1 位作者 Richeng Liu Changzhou Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1427-1440,共14页
The nonlinear flow properties of Newtonian fluids through crossed fractures are estimated by considering the influences of length,aperture,and surface roughness of fractures.A total of 252 computational runs are perfo... The nonlinear flow properties of Newtonian fluids through crossed fractures are estimated by considering the influences of length,aperture,and surface roughness of fractures.A total of 252 computational runs are performed by creating 36 computational domains,in which the Navier-Stokes equations are solved.The results show that the nonlinear relationship between flow rate and hydraulic gradient follows Forchheimer’s law–based equation.When the hydraulic gradient is small(i.e.,10^(−6)),the streamlines are parallel to the fracture walls,indicating a linear streamline distribution.When the hydraulic gradient is large(i.e.,10^(0)),the streamlines are disturbed by a certain number of eddies,indicating a nonlinear streamline distribution.The patterns of eddy distributions depend on the length,aperture,and surface roughness of fractures.With the increment of hydraulic gradient from 10^(−6) to 10^(0),the ratio of flow rate to hydraulic gradient holds constants and then decreases slightly and finally decreases robustly.The fluid flow experiences a linear flow regime,a weakly nonlinear regime,and a strongly nonlinear regime,respectively.The critical hydraulic gradient ranges from 3.27×10^(−5) to 5.82×10^(−2) when fracture length=20–100mmandmechanical aperture=1–5mm.The joint roughness coefficient plays a negligible role in the variations in critical hydraulic gradient compared with fracture length and/or mechanical aperture.The critical hydraulic gradient decreases with increasing mechanical aperture,following power-law relationships.The parameters in the functions are associated with fracture length. 展开更多
关键词 Crossed fractures surface roughness APERTURE nonlinear flow critical hydraulic gradient
下载PDF
Experimental Studies on Extraction of Modified Suction Caisson (MSC) in Sand by Reverse Pumping Water 被引量:3
4
作者 HUANG Ling-xia ZHANG Yu-kun LI Da-yong 《China Ocean Engineering》 SCIE EI CSCD 2021年第2期272-280,共9页
A suction caisson can be extracted by applying reverse pumping water,which cannot be regarded as the reverse process of installation because of the dramatically different soil−structure interaction behavior.Model test... A suction caisson can be extracted by applying reverse pumping water,which cannot be regarded as the reverse process of installation because of the dramatically different soil−structure interaction behavior.Model tests were first carried out in this study to investigate the extraction behavior of the modified suction caisson(MSC)and the regular suction caisson(RSC)in sand by reverse pumping water.The effects of the installation ways(suction-assisted or jacking installation)and the reverse pumping rate on the variations of the over-pressure resulting form reverse pumping water were investigated.It was found that neither the RSC nor the MSC can be fully extracted from sand.When the maximum extraction displacement is obtained,the hydraulic gradient of the sand in the suction caisson reaches the critical value,leading to seepage failure.In addition,the maximum extraction displacement decreases with the increasing reverse pumping rate.Under the same reverse pumping rate,the final extraction displacements for the RSC and MSC installed by suction are lower than those for the RSC and MSC installed by jacking.The final extraction displacement of MSC is almost equal to that of the RSC with the same internal compartment length.Based on the force equilibrium,a method of estimating the maximum extraction displacement is proposed.It has been proved that the proposed method can rationally predict the maximum extraction displacement and the corresponding over-pressure. 展开更多
关键词 modified suction caisson(MSC) model test EXTRACTION critical hydraulic gradient maximum extraction displacement
下载PDF
On the Influence of Vortex-Induced Resistance on Oil-Shale Particle-Slurry Flow in Vertical Pipes 被引量:1
5
作者 Li-an Zhao Tieli Wang 《Fluid Dynamics & Materials Processing》 EI 2021年第2期413-426,共14页
The transportation in vertical pipelines of particle slurry of oil shale has important applications in several fields(marine mining,hydraulic mining,dredging of river reservoir,etc.).However,there is still a lack of i... The transportation in vertical pipelines of particle slurry of oil shale has important applications in several fields(marine mining,hydraulic mining,dredging of river reservoir,etc.).However,there is still a lack of information about the behavior of coarse particles in comparison to that of fine particles.For this reason,experiments on the fluidization and hydraulic lifting of coarse oil shale particles have been carried out.The experimental data for three kinds of particles with an average size of 5 mm,15 mm and 25 mm clearly demonstrate that vortices can be formed behind the particles.On this basis,a vortex resistance factor K is proposed here to describe this effect.A possible correlation law is defined by means of a data fitting method accordingly.This law is validated by an experiment employing particles with an average size of 3.4 mm.The vortex resistance factor K results in a reduction of the speed of solid particles and an increase in the sliding speed as well as a decrease in the hydraulic gradient.As a result,using this factor,the calculation of the solid particle speed and hydraulic gradient can be made more accurate with respect to measured values. 展开更多
关键词 Coarse particle hydraulic gradient vertical pipe FLUIDIZATION
下载PDF
Development of a simple method for determining the influence radius of a pumping well in steady-state condition 被引量:1
6
作者 A S El-Hames 《Journal of Groundwater Science and Engineering》 2020年第2期97-107,共11页
Influence radius of a pumping well is a crucial parameter for hydrogeologists and engineers. Knowing the radius of influence for a designed drawdown enables one to calculate the pumping rate required to layout a proje... Influence radius of a pumping well is a crucial parameter for hydrogeologists and engineers. Knowing the radius of influence for a designed drawdown enables one to calculate the pumping rate required to layout a project foundation that may need lowering of groundwater level to a certain depth due to dewatering operation. In addition, this is important for hydrogeologists to determine ground water contamination flow paths and contributing recharge area for domestic water supply and aquifer management purposes. Empirical formulas that usually neglect vital parameters to determine the influence radius accurately have been traditionally utilized due to lack of adequate methods. In this study, a physically based method, which incorporates aquifer hydraulic gradient for determining the influence radius of a pumping well in steady-state flow condition, was developed. It utilizes Darcy and Dupuit laws to calculate the influence radius, where Darcy’s law and Dupuit equation, in steady-state condition, represent the inflow and the outflow of the pumping well, respectively. In an untraditional manner, this method can be also used to determine aquifer hydraulic conductivity as an alternative to other pumping test methods with high degree of accuracy. The developed method is easy to use;where a simple mathematical calculator may be used to calculate the influence radius and the pumping rate or hydraulic conductivity. By comparing the results from this method with the MODFLOW numerical model outputs with different simulated scenarios, it is realized that this method is much superior and more advantageous than other commonly used empirical methods. 展开更多
关键词 Radius of influence DEWATERING hydraulic gradient hydraulic conductivity Pumping rate Aquifer management
下载PDF
Experimental and Numerical Investigation of Stress Condition in Unstable Soil 被引量:1
7
作者 Marx Ferdinand Ahlinhan Emmanuel Kokou Wouya +2 位作者 Yvette Kiki Tankpinou Marius Bocco Koube Codjo Edmond Adjovi 《Open Journal of Civil Engineering》 2016年第3期370-380,共11页
In unstable soils, a special erosion process termed suffusion can occur under the effect of relatively low hydraulic gradient. The critical hydraulic gradient of an unstable soil is smaller than in stable soils, which... In unstable soils, a special erosion process termed suffusion can occur under the effect of relatively low hydraulic gradient. The critical hydraulic gradient of an unstable soil is smaller than in stable soils, which is described by a reduction factor α. According to a theory of Skempton and Brogan (1994) [1], this reduction factor is related to the stress conditions in the soil. In an unstable soil, the average stresses acting in the fine portion are believed to be smaller than the average stresses in the coarse portion. It is assumed that the stress ratio and the reduction factor for the hydraulic gradient are almost equal. In order to prove this theory, laboratory tests and discrete element modelings are carried out. Models of stable and unstable soils are established, and the stresses inside the sample are analysed. It is found that indeed in unstable soils the coarse grains are subject to larger stresses. The stress ratios in stable soils are almost unity, whereas in unstable soils smaller stress ratios, which are dependent on the soil composition and on the relative density of the soil, are obtained. A comparison between the results of erosion tests and numerical modeling shows that the stress ratios and the reduction factors are strongly related, as assumed by Skempton and Brogan (1994) [1]. 展开更多
关键词 Unstable Soil Suffusion hydraulic gradient Stress Reduction Factor Laboratory Tests Discrete Element Modeling
下载PDF
Seepage behavior of soil mixed with randomly distributed recycled plastic materials
8
作者 V.P.Devipriya S.Chandrakaran K.Rangaswamy 《Water Science and Engineering》 EI CAS CSCD 2022年第3期257-264,共8页
Seepage through embankment fill materials is crucial issue in the construction of embankments for irrigation and drainage projects.Proper ground improvement methods should be used to improve the strength and stability... Seepage through embankment fill materials is crucial issue in the construction of embankments for irrigation and drainage projects.Proper ground improvement methods should be used to improve the strength and stability characteristics of soil used as fill material.Utilization of waste plastic materials to enhance the engineering properties of soil is a sustainable approach.Additionally,the use of raw products directly from plastic recycling units in the form of flakes and pellets as soil additives has the potential to further enhance the economic benefits of this method.This study randomly mixed plastic materials with soil for use in the construction of earth embankments,such as river levees,dykes,and canal diversion structures,and evaluated the effectiveness of these materials in reducing seepage failures in hydraulic structures.To achieve these goals,this study collected high-density polyethylene(HDPE)plastic from plastic recycling units and used soil mixed with HDPE plastic in the form of flakes and pellets in different contents as embankment fill materials,then evaluated how these materials affected the piping features.Laboratory experiments were conducted to determine the seepage velocity and critical hydraulic gradient of soil mixed with plastics in various contents and to compare the values with those of plain soil.The results showed that random distribution of waste plastics in the form of flakes and pellets in soil is an effective method for improving the piping resistance of soil. 展开更多
关键词 Earth embankments SEEPAGE Recycled plastics Critical hydraulic gradient Piping resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部