期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Bubble entrainment, spray and splashing at hydraulic jumps 被引量:2
1
作者 CHANSON Hubert 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1396-1405,共10页
The sudden transition from a high-velocity, supercritical open channel flow into a slow-moving sub-critical flow is a hydraulic jump. Such a flow is characterised by a sudden rise of the free-surface, with some strong... The sudden transition from a high-velocity, supercritical open channel flow into a slow-moving sub-critical flow is a hydraulic jump. Such a flow is characterised by a sudden rise of the free-surface, with some strong energy dissipation and air entrainment, waves and spray. New two-phase flow measurements were performed in the developing flow region using a large-size facility operating at large Reynolds numbers. The experimental results demonstrated the complexity of the flow with a developing mixing layer in which entrained bubbles are advected in a high shear stress flow. The relationship between bubble count rates and void fractions was non-unique in the shear zone, supporting earlier observations of some form of double diffusion process between momentum and air bubbles. In the upper region, the flow consisted primarily of water drops and packets sur-rounded by air. Visually significant pray and splashing were significant above the jump roller. The present study is the first com-prehensive study detailing the two-phase flow properties of both the bubbly and spray regions of hydraulic jumps, a first step towards understanding the interactions between bubble entrainment and droplet ejection processes. 展开更多
关键词 hydraulic jump Air bubble entrainment Spray and splashing physical modelling Particle chord time distributions
下载PDF
Smoothed Particle Hydrodynamic Modelling of Hydraulic Jumps: Bulk Parameters and Free Surface Fluctuations
2
作者 Patrick Jonsson Pär Jonsén +2 位作者 Patrik Andreasson T. Staffan Lundström J. Gunnar I. Hellström 《Engineering(科研)》 2016年第6期386-402,共17页
A hydraulic jump is a rapid transition from supercritical flow to subcritical flow characterized by the development of large scale turbulence, surface waves, spray, energy dissipation and considerable air entrainment.... A hydraulic jump is a rapid transition from supercritical flow to subcritical flow characterized by the development of large scale turbulence, surface waves, spray, energy dissipation and considerable air entrainment. Hydraulic jumps can be found in waterways such as spillways connected to hydropower plants and are an effective way to eliminate problems caused by high velocity flow, e.g. erosion. Due to the importance of the hydropower sector as a major contributor to the Swedish electricity production, the present study focuses on Smoothed Particle Hydrodynamic (SPH) modelling of 2D hydraulic jumps in horizontal open channels. Four cases with different spatial resolution of the SPH particles were investigated by comparing the conjugate depth in the subcritical section with theoretical results. These showed generally good agreement with theory. The coarsest case was run for a longer time and a quasi-stationary state was achieved, which facilitated an extended study of additional variables. The mean vertical velocity distribution in the horizontal direction compared favorably with experiments and the maximum velocity for the SPH-simulations indicated a too rapid decrease in the horizontal direction and poor agreement to experiments was obtained. Furthermore, the mean and the standard deviation of the free surface fluctuation showed generally good agreement with experimental results even though some discrepancies were found regarding the peak in the maximum standard deviation. The free surface fluctuation frequencies were over predicted and the model could not capture the decay of the fluctuations in the horizontal direction. 展开更多
关键词 SPH hydraulic Jump Conjugate Depth Free Surface Fluctuation Vertical Velocity Distribution
下载PDF
Study of a Hydraulic Jump in an Asymmetric Trapezoidal Channel with Different Sluice Gates
3
作者 Bouthaina Debabeche Sonia Cherhabil 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1499-1516,共18页
In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asym... In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asymmetric trapezoidal flume with a length of 7 m and a width of 0.304 m is considered,with the bottom of the flume transversely inclined at an angle of m=0.296 and vertical lateral sides.The corresponding inflow Froude number is allowed to range in the interval(1.40<F1<6.11).The properties of this jump are compared to those of hydraulic jumps in channels with other types of cross-sections.A relationship for calculating hydraulic jump efficiency is proposed for the considered flume.For F1>5,the hydraulic jump is found to be more effective than that occurring in triangular and symmetric trapezoidal channels.Also,when■mes>8 and■>5,the hydraulic jump in the asymmetrical trapezoidal channel downstream of a parallelogram sluice gate is completely formed as opposed to the situation where a triangular sluice is considered. 展开更多
关键词 Asymmetric trapezoidal channel characteristic lengths EFFICIENCY Froude hydraulic jump sequent depths sluice gate
下载PDF
PRESSURE FLUCTUATIONS BENEATH SPATIAL HYDRAULIC JUMPS 被引量:2
4
作者 YAN Zhong-min ZHOU Chun-tian LU Shi-qiang 《Journal of Hydrodynamics》 SCIE EI CSCD 2006年第6期723-726,共4页
This article deals with statistical analysis of pressure fluctuations at the bottom of spatial hydraulic jumps with abrupt lateral expansions. The effects of the channel expansion ratio and inflow condition on the pow... This article deals with statistical analysis of pressure fluctuations at the bottom of spatial hydraulic jumps with abrupt lateral expansions. The effects of the channel expansion ratio and inflow condition on the power spectral and dominant frequency were examined. Pressure data were recorded for different Froude numbers ranging from 3.52 to 6.86 and channel expansion ratios ranging from 1.5 to 3.0. A sampling frequency of 100 Hz was selected. The measurements were conducted in the bed of a glass-walled laboratory flume by means of pressure transducers and data acquisition systems. Power spectra as well as dominant frequency and some other statistical characteristics of fluctuating pressure beneath hydraulic jumps were obtained. Test results were compared with those of classical jump, which indicates that the peak frequencies and intensity coefficients of pressure fluctuations are higher than those of the corresponding classical jumps. 展开更多
关键词 spatial hydraulic jumps pressure fluctuation stochastic analysis FREQUENCY AMPLITUDE
原文传递
Experiments on two-phase flow in hydraulic jump on pebbled rough bed:Part 2–Bubble clustering
5
作者 Farhad Bahmanpouri Carlo Gualtieri Hubert Chanson 《Water Science and Engineering》 EI CAS CSCD 2023年第4期369-380,共12页
A survey on bubble clustering in air–water flow processes may provide significant insights into turbulent two-phaseflow.These processes have been studied in plunging jets,dropshafts,and hydraulic jumps on a smooth bed.... A survey on bubble clustering in air–water flow processes may provide significant insights into turbulent two-phaseflow.These processes have been studied in plunging jets,dropshafts,and hydraulic jumps on a smooth bed.As a first attempt,this study examined the bubble clustering process in hydraulic jumps on a pebbled rough bed using experimental data for 1.70<Fr_(1)<2.84(with Fr_(1) denoting the inflow Froude number).The basic properties of particle grouping and clustering,including the number of clusters,the dimensionless number of clusters per second,the percentage of clustered bubbles,and the number of bubbles per cluster,were analyzed based on two criteria.For both criteria,the maximum cluster count rate was greater on the rough bed than on the smooth bed,suggesting greater interactions between turbulence and bubbly flow on the rough bed.The results were consistent with the longitudinal distribution of the interfacial velocity using one of the criteria.In addition,the clustering process was analyzed using a different approach:the interparticle arrival time of bubbles.The comparison showed that the bubbly flow structure had a greater density of bubbles per unitflux on the rough bed than on the smooth bed.Bed roughness was the dominant parameter close to the jump toe.Further downstream,Fr_(1) predominated.Thus,the rate of bubble density decreased more rapidly for the hydraulic jump with the lowest Fr_(1). 展开更多
关键词 hydraulic jump Pebbled rough bed Clustering analysis Interparticle arrival time Two-phase flow
下载PDF
Experiments on two-phase flow in hydraulic jump on pebbled rough bed:Part 1–Turbulence properties and particle chord time and length
6
作者 Farhad Bahmanpouri Carlo Gualtieri Hubert Chanson 《Water Science and Engineering》 EI CAS CSCD 2023年第4期359-368,共10页
This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time ... This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time and length and their probability density functions(PDFs),was investigated.The results demonstrated that turbulence intensity was relatively greater on a rough bed in the roller length,whereas further downstream,the decay rate was higher.In addition,the relationship between turbulence intensity and dimensionless bubble count rate reflected an increase in turbulence intensity associated with the number of entrained particles.Triple decomposition analysis(TDA)was performed to determine the contributions of slow and fast turbulent components.The TDA results indicated that,regardless of bed type and inflow conditions,the sum of the band-pass(T'_(u))and high-pass(T″_(u))filtered turbulence intensities was equal to the turbulence intensity of the raw signal data(T_(u)).T″_(u) highlighted a higher turbulence intensity and larger vorticities on the rough bed for an identical inflow Froude number.Additional TDA results were presented in terms of the interfacial velocity,auto-and cross-correlation time scales,and longitudinal advection length scale,with the effects of low-and high-frequency signal components on each highlighted parameter.The analysis of the air chord time indicated an increase in the proportion of small bubbles moving downstream.The second part of this research focused on the basic properties of particle grouping and clustering. 展开更多
关键词 hydraulic jump Pebbled rough bed Turbulence intensity Particle chord time Two-phase flow
下载PDF
Study on the Mathematical Model of Hydraulic Jump Atomization 被引量:2
7
作者 张华 练继建 刘昉 《Transactions of Tianjin University》 EI CAS 2004年第1期71-76,共6页
An equation of atomization quantity from energy dissipation by hydraulic jump was derived from the dimensional analysis. By applying Gauss diffusion equation, the spray diffusion rule in valley was studied under the c... An equation of atomization quantity from energy dissipation by hydraulic jump was derived from the dimensional analysis. By applying Gauss diffusion equation, the spray diffusion rule in valley was studied under the condition of continuous linear source and random wind direction.By considering the spray rain switching process, coagulation, condensation and evaporation of droplets, the air temperature, air relative humidity, spray density and the rainfall intensity in the lower reaches of the linear source were calculated. The 3 D numerical simulation fitted well with prototype monitoring. Finally, the prediction of atomization influence on environments for Xiangjiaba Hydropower Station was conducted. 展开更多
关键词 energy dissipation by hydraulic jump ATOMIZATION numerical simulation
下载PDF
Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming
8
作者 Akram ABBASPOUR Davood FARSADIZADEH Mohammad Ali GHORBANI 《Water Science and Engineering》 EI CAS CSCD 2013年第2期189-198,共10页
Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hy... Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models. 展开更多
关键词 artificial neural networks genetic programming corrugated bed Froude number hydraulic jump
下载PDF
Geometry and Dynamic Forces along an Inclined Hydraulic Jump over a Rough Channel Bed
9
作者 D. Dimitriou John D. Demetriou 《Journal of Civil Engineering and Architecture》 2010年第11期26-32,共7页
In this investigation, based on previous measurements, the geometry and dynamic forces along an inclined (angle φ, with 0^0 〈 qφ φ 8^0 ) hydraulic jump over a variation of rough and smooth channel beds, are exam... In this investigation, based on previous measurements, the geometry and dynamic forces along an inclined (angle φ, with 0^0 〈 qφ φ 8^0 ) hydraulic jump over a variation of rough and smooth channel beds, are examined and compared among them. The roughness is produced through transverse strips (of square cross section) covering the entire channel width and at various normal distributions along the channel. Froude numbers are varying up to 18.5 and conjugate depths' ratios up to 18.4. The water free surface profiles, the conjugate depths' ratios, the jumps' dimensionless lengths are examined and a prediction of exercised forces, in dimensionless terms, is also presented. The results and especially the latter force prediction may help the hydraulic and structural engineers when dealing with such hydraulic jumps. 展开更多
关键词 hydraulic jump rough beds.
下载PDF
Wave Decay and Its Characteristics in Surf Zone
10
作者 Gu, Jialong Shen, Xianrong 《China Ocean Engineering》 SCIE EI 1991年第2期139-152,共14页
In accordance with the similarity between breaking waves and hydraulic jumps, the expressions for estimating wave decay and wave energy dissipation in the surf zone are derived based on the fundamental equations of fl... In accordance with the similarity between breaking waves and hydraulic jumps, the expressions for estimating wave decay and wave energy dissipation in the surf zone are derived based on the fundamental equations of fluid mechanics. Using the numerical solution of cnoidal wave theory, the various kinematic properties of waves in the surf zone, including the relative wave crest height, wave energy, and radiation stress are discussed. The values calculated with the method proposed in this paper are in good agreement with the experimental data gained by other researchers. The present expressions can be used in the studies of sediment transport on gently sloping beaches, especially on muddy beaches. 展开更多
关键词 Beaches Fluid Mechanics hydraulic Jump
下载PDF
Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions
11
作者 Rasoul Daneshfaraz Ehsan Aminvash +2 位作者 Reza Esmaeli Sina Sadeghfam John Abraham 《Journal of Groundwater Science and Engineering》 2020年第4期396-406,共11页
Dealing with kinetic energy is one of the most important problems in hydraulic structures,and this energy can damage downstream structures.This study aims to study energy dissipation of supercritical water flow passin... Dealing with kinetic energy is one of the most important problems in hydraulic structures,and this energy can damage downstream structures.This study aims to study energy dissipation of supercritical water flow passing through a sudden contraction.The experiments were conducted on a sudden contraction with 15 cm width.A 30 cm wide flume was installed.The relative contraction ranged from 8.9 to 9.7,where relative contraction refers to the ratio of contraction width to initial flow depth.The Froude value in the investigation varied from 2 to 7.The contraction width of numerical simulation was 5~15 cm,the relative contraction was 8.9~12.42,and the Froude value ranged from 8.9~12.42.In order to simulate turbulence,the k-εRNG model was harnessed.The experimental and numerical results demonstrate that the energy dissipation increases with the increase of Froude value.Also,with the sudden contraction,the rate of relative depreciation of energy is increased due to the increase in backwater profile and downstream flow depth.The experimentation verifies the numerical results with a correlation coefficient of 0.99 and the root mean square error is 0.02. 展开更多
关键词 Relative energy dissipation hydraulic jump Sudden contraction
下载PDF
On Steady States and Its Capturing Schemes for Shallow-Water Equations with Source Terms
12
作者 尹丽 黄明游 尹景学 《Northeastern Mathematical Journal》 CSCD 2004年第3期257-260,共4页
关键词 shallow-water equation source term hydraulic jump balance condition difference scheme
下载PDF
Local hydraulic jump effects on sediment deposition in open-channel flume experiments
13
作者 Shi-hao Fu Mao-lin Zhou +2 位作者 Wei-lin Xu Wang-ru Wei Guo-guang Wang 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第2期268-277,共10页
When a river channel is narrow,bifurcated,or intersected,or when extreme weather or geological disasters cause shed rock masses to occupy a river flood channel,local hydraulic jumps may develop in the channel.Natural ... When a river channel is narrow,bifurcated,or intersected,or when extreme weather or geological disasters cause shed rock masses to occupy a river flood channel,local hydraulic jumps may develop in the channel.Natural disasters such as landslides,floods,and debris flows occur upstream,will result in large transport rate of large-sized gravel particles.Those particles may be blocked in hydraulic jump areas,causing river channel water depth to rise.In this study,the effect of local hydraulic jumps on the sediment deposition rate was investigated in flume experiments.The ratio of upstream and downstream Froude numbers,particle size,Sediment supply intensity,and flow discharge all affected the sediment deposition rate.With increases in the ratio of upstream and downstream Froude numbers,particle size,and sediment supply intensity,the sediment deposition rate increased.The sediment deposition rate decreased with an increase in flow discharge.Approach hydraulic conditions and particle properties jointly determined the sediment deposition rate in a hydraulic jump section,and an empirical formula was developed using those parameters to calculate the sediment deposition rate.Thus,to identify risks and prevent disasters in mountain rivers,local changes in hydraulic conditions and particle properties need to be jointly evaluated. 展开更多
关键词 hydraulic jump sediment deposition particle size upstream/downstream Froude numbers ratio sediment supply intensity flowdischarge
原文传递
SPH numerical investigation of the characteristics of an oscillating hydraulic jump at an abrupt drop 被引量:1
14
作者 Diana De Padova Michele Mossa Stefano Sibilla 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第1期106-113,共8页
This paper shows the results of the smooth particle hydrodynamics(SPH) modelling of the hydraulic jump at an abrupt drop,where the transition from supercritical to subcritical flow is characterised by several flow p... This paper shows the results of the smooth particle hydrodynamics(SPH) modelling of the hydraulic jump at an abrupt drop,where the transition from supercritical to subcritical flow is characterised by several flow patterns depending upon the inflow and tailwater conditions. SPH simulations are obtained by a pseudo-compressible XSPH scheme with pressure smoothing; turbulent stresses are represented either by an algebraic mixing-length model, or by a two-equation k-ε model. The numerical model is applied to analyse the occurrence of oscillatory flow conditions between two different jump types characterised by quasi-periodic oscillation,and the results are compared with experiments performed at the hydraulics laboratory of Bari Technical University. The purpose of this paper is to obtain a deeper understanding of the physical features of a flow which is in general difficult to be reproduced numerically,owing to its unstable character: in particular, vorticity and turbulent kinetic energy fields, velocity, water depth and pressure spectra downstream of the jump, and velocity and pressure cross-correlations can be computed and analysed. 展开更多
关键词 hydraulic jumps smoothed particle hydrodynamics(SPH) models oscillating characteristics
原文传递
A GENERALIZED EXPLICIT SOLUTION OF THE SEQUENT DEPTH RATIO FOR THE HYDRAULIC JUMP 被引量:4
15
作者 NI Han-gen LIU Ya-kun 《Journal of Hydrodynamics》 SCIE EI CSCD 2005年第5期596-600,共5页
By use of the property of the momentum equation describing the hydraulic jump in rectangular channels, a generalized solution of the sequent depth ratio was given. On the basis of the generalized solution the explicit... By use of the property of the momentum equation describing the hydraulic jump in rectangular channels, a generalized solution of the sequent depth ratio was given. On the basis of the generalized solution the explicit solutions of the sequent depth ratio were obtained for the hydraulic jump in gradual enlargements, the corresponding relative energy losses were also presented, and a method to determine the location of hydraulic jump in gradual enlargements was proposed. 展开更多
关键词 cubic algebraic equation hydraulic jump sequent depth ratio jump in gradual enlargement
原文传递
Air entrainment of hydraulic jump aeration basin 被引量:2
16
作者 Jian-hua Wu Yu Zhou Fei Ma 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第5期962-965,共4页
In order to avoid the cavitation damage and the decrease of the energy dissipation of the stepped spillways with a large unit discharge, the air entrainments of the hydraulic jump aeration basin (HJAB) are theoretic... In order to avoid the cavitation damage and the decrease of the energy dissipation of the stepped spillways with a large unit discharge, the air entrainments of the hydraulic jump aeration basin (HJAB) are theoretically and experimentally investigated for the hydraulic-jump-stepped spillway developed by the authors. It is shown that the submerged degree of the hydraulic jump and the air concentration in the measuring section are all functions of the dimensionless discharge, the length and the end sill height of the H JAB. The submerged degree odecreases with the increase of the dimensionless discharge or the dimensionless length of the H JAB, but increases with the increase of the dimensionless height of the end sill of the HJAB. The flow regimes near the critical hydraulic jump, namely, at or= 1.0, have the best effect of the air entrainment for the flow at the measuring section and then that of the stepped spillway. 展开更多
关键词 Air entrainment hydraulic jump hydraulic jump aeration basin stepped spillway submerged degree
原文传递
Hydraulic jump basins with wedge-shaped baffles 被引量:2
17
作者 Ashraf Fathy ELLAYN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第7期519-525,共7页
This laboratory study deals with the hydraulic jump properties for an artificially roughened bed with wedge-shaped baffle blocks. The experiments were conducted for both smooth and rough beds with a Froude number in t... This laboratory study deals with the hydraulic jump properties for an artificially roughened bed with wedge-shaped baffle blocks. The experiments were conducted for both smooth and rough beds with a Froude number in the range of 3.06≤F1≤10.95 and a relative bed roughness ranging 0.22≤KR≤1.4. The data from this study were compared with those of rectangular baffle blocks. New experimental formulae were developed for determining the sequent depth ratio and the hydraulic jump length in terms of the inflow Froude number and relative bed roughness. Bélanger's jump equation of a rectangular channel was extended to account for the implications of the bed shear stress coefficient attributable to channel bed roughness. It was found that, in comparison with the smooth bed, the wedge-shaped bed roughness reduced the sequent depth of the hydraulic jump by approximately 16.5% to 30% and the hydraulic jump length by approximately 30% to 53%. 展开更多
关键词 Energy dissipater hydraulic jump Stilling basins Wedge-shaped bed roughness
原文传递
A STUDY OF WAVE CHARACTERISTICS AFTER HYDRAULIC JUMP 被引量:1
18
作者 Wu Zheng-xiang Liu Guo-chang The Dept.of Water Conservancy and Environmental Eng.,The Zhengzhou Institute of Technology,Zhengzhou 450002. 《Journal of Hydrodynamics》 SCIE EI CSCD 1993年第1期58-62,共5页
An experimental study of wave characteristics after jump in energy dissipation of hydraulic jump is presentedinthis paper.It was completed in a trough with a horizontal bed, 40cm in width.Various elements of wave were... An experimental study of wave characteristics after jump in energy dissipation of hydraulic jump is presentedinthis paper.It was completed in a trough with a horizontal bed, 40cm in width.Various elements of wave were measured,the wave form,period,spectrum and its attenuation along course are analyzed,and the physical mechanism of wave is discussed. An expression of the maximum wave height after jump is given,based on the measured data. Some measures to diminish wave are discussed preliminarily also. 展开更多
关键词 wave characteristics hydraulic jump experimental study
原文传递
SIMILARITY LAW OF FLUCTUATING PRESSURE WITHIN HYDRAULIC JUMP AREA 被引量:1
19
作者 Zhang, Shengming 《Journal of Hydrodynamics》 SCIE EI CSCD 1992年第2期46-51,共6页
For further study of the similarity law of fluctuating pressure, a series of model tests with more scales, covering a wide range of Reynolds number and Froude number have been completed. The data of the fluctuating pr... For further study of the similarity law of fluctuating pressure, a series of model tests with more scales, covering a wide range of Reynolds number and Froude number have been completed. The data of the fluctuating pressure acting the floor level within 2-D free hydraulic jump were obtained. Froude number varied from 2.94 to 8.61, and Reynolds number ranged from 2×104 to 6×105. The tests were conducted in a glass flume with 0.2 m in width and six fluctuating pressure probes (Type CYG-01) were installed on the floor within the jump. Experimental results indicate that the amplitude scale of fluctuating pressure is the length of the model, i.e., Pr=Lr, which agrees with gravity similarity law. The frequency scale of the fluctuating pressure is an unity i.e., fr=1, which does not satisfy the gravity similarity law. 展开更多
关键词 hydraulic Jump
原文传递
Hydraulic jump and choking of flow in pipe with a change of slope
20
作者 Rui Zeng S.Samuel Li 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第6期1044-1066,共23页
This paper investigates hydraulic jumps in sloping pipes by means of wall-resolved large eddy simulation(LES).The purpose is to achieve an improved understanding of jump behaviours driven by pipe discharge and slope.T... This paper investigates hydraulic jumps in sloping pipes by means of wall-resolved large eddy simulation(LES).The purpose is to achieve an improved understanding of jump behaviours driven by pipe discharge and slope.The LES model predicts the hydraulic jump as a 3-D two-phase flow,with air as the gas phase and water as the liquid phase.The predictions yield instantaneous velocity and pressure fields as well as fluid volume fraction.The instantaneous flow variables allow ensemble averages,which quantify the internal structures and integral properties of the hydraulic jump.The predicted instantaneous velocity shows spectra in consistency with the well-known Kolmogorov−5/3 law.The ensemble averages of air and water velocities,free-surface profile,roller length and aeration length,compare well with available experimental data.The jump behaviours are complex.Some aspects such as free-surface fluctuation and jump-toe oscillation resemble the classical hydraulic jump on horizontal floors.Others like the 3-D distributions of core jet,vorticity and aeration are much more complicated.Depending on the pipe discharge and slope,the resulting jump can be a complete or an incomplete jump.The incomplete hydraulic jump causes choked flow downstream.This has severe consequences on drainage conditions in sewer pipes laid on sloping terrain.This paper proposes using the Okubo-Weiss parameter as a new way to subtly delineate the region of hydraulic jump.It is much more efficient and less ambiguous,compared with traditional visual inspections. 展开更多
关键词 hydraulic jump sloping pipe two-phase bubbly flow large eddy simulation(LES) choking of flow Okubo-Weiss parameter
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部