期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nonlinear Adaptive Robust Force Control of Hydraulic Load Simulator 被引量:17
1
作者 YAO Jianyong JIAO Zongxia +2 位作者 YAO Bin SHANG Yaoxing DONG Wenbin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第5期766-775,共10页
This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear proper... This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear properties and uncertainties make the conven- tional feedback proportional-integral-derivative control not yield to high-performance requirements. In this paper, a nonlinear system model is derived and linear parameterization is made for adaptive control. Then a discontinuous projection-based nonlin- ear adaptive robust force controller is developed for hydraulic load simulator. The proposed controller constructs an asymptoti- cally stable adaptive controller and adaptation laws, which can compensate for the system nonlinearities and uncertain parame- ters. Meanwhile a well-designed robust controller is also developed to cope with the hydraulic system uncertain nonlinearities. The controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncer- tainties and uncertain nonlinearities; in the absence of uncertain nonlinearities, the scheme also achieves asymptotic tracking performance. Simulation and experiment comparative results are obtained to verify the high-performance nature of the proposed control strategy and the tracking accuracy is greatly improved. 展开更多
关键词 hydraulic load simulator adaptive control robust control nonlinear control hydraulic actuators Lyapunov functions
原文传递
Matching design of hydraulic load simulator with aerocraft actuator 被引量:5
2
作者 Shang Yaoxing Yuan Hang +1 位作者 Jiao Zongxia Yao Nan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期470-480,共11页
This paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obsta... This paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obstacles in putting forward appropriate requirements of HLS. Traditional research overemphasizes the optimization of parameters and methods for HLS controllers. It lacks deliberation because experimental results and project experiences indicate different ultimate performance of a specific HLS. When the actuator paired with this HLS is replaced, the dynamic response and tracing precision of this HLS also change, and sometimes the whole system goes so far as to lose control. Based on the influence analysis of the preceding phenomena, a theory about matching design of aerocraft actuator with HLS is presented, together with two paired new concepts of "Standard Actuator" and "Standard HLS". Further research leads to seven important conclusions of matching design, which suggest that appropriate stiffness and output torque of HLS should be carefully designed and chosen for an actuator. Simulation results strongly support that the proposed principle of matching design can be anticipated to be one of the design criteria for HLS, and successfully used to explain experimental phenomena and project experiences. 展开更多
关键词 Aerocraft actuator DESIGN Flight simulation hydraulic drive and control hydraulic load simulator (HLS) MATCHING Servo control STIFFNESS
原文传递
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
3
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部