[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulate...[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulated vertical flow arti-ficial wetland, set four hydraulic load level at 50, 100, 150 and 200 cm/d, to identify the impact of hydraulic loading on wetland clogging and to explore the factors run-ning threshold. [Result] The results show that the different levels of hydraulic loading have greater impact; in the constructed wetland clogging process under high hy-draulic loading of 200 cm/d, the effective life was only six months, and the single factor can be speculated that the threshold of the hydraulic load should be at 100-150 cm/d; system can last for six months at low hydraulic loading and last for three months at medium hydraulic load. [Conclusion] The research provides references for wetland clogging experiments in future.展开更多
In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results sh...In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has ...A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has the function of nitrification and removing organic substrate. In this study, we focused on the denitrification performance of LBAF and its possible mechanism under thorough aeration. We identified the existence of simultaneous nitrification and denitrification (SND) by analyzing nitrogenous compounds along the flow path of LBAF and supportive microbial microscopy, and studied the effects of air/water ratio and hydraulic loading on the performance of nitrogen removal and on SND in LBAF to find out the optimal operation condition. It is found that for saving operation cost, aeration can be reduced to some degree that allows desirable removal efficiency of pollutants, and the optimal air/water ratio is 10:1. Hydraulic loading less than 0.43 m h?1 hardly affects the nitrification and denitrification performance; whereas higher hydraulic loading is unfavorable to both nitrification and denitrification, far more unfavorable to denitrification than to nitrification.展开更多
Wastewater reforming was done rationally on technological process and equipment for treating Vitamin C wastewater with full scale UBF. High concentration wastewater was mixed with recycle effluent from anaerobic treat...Wastewater reforming was done rationally on technological process and equipment for treating Vitamin C wastewater with full scale UBF. High concentration wastewater was mixed with recycle effluent from anaerobic treatment, so influent COD was reduced and total alkalinity was increased, meanwhile, appropriate hydraulic loading to the reactor was controlled during its running, thus treatment capacity of reactor was improved. Volumetric loading rate was raised from 6 0 kg COD/(m 3·d) to 10 0 kg COD/(m 3·d), biogas production rate was raised from 1 8 m 3/(m 3·d) to 3 2 m 3/(m 3·d), the amount of alkali and dilution water for adjusting pH were also reduced.展开更多
Objective This work is an evaluation of the efficiency of a sand-gravel or unwoven fabric bed system and Lolium perenne Lam as plant biofilter in the reduction of solids and nutrients removal from aquaculture discharg...Objective This work is an evaluation of the efficiency of a sand-gravel or unwoven fabric bed system and Lolium perenne Lam as plant biofilter in the reduction of solids and nutrients removal from aquaculture discharge water. Methods The fzrst step consisted of the collection of wastewater in the tank and the distribution at three different hydraulic loading regimes (0.5, 1, 1.5 L/hour) to the different experimental systems. The second step was to evaluate the performance of the different systems. The fzrst system consisted of a bucket filled with a substrate of sand/gravel (20 cm in depth), on the bottom of which was a 80 mesh/inch2 of nylon (S1); the second was similar, but was planted with Lolium perenne lam (S2); the third was planted with a grass plate consisting of 7 layers of unwoven fabric planted with L. perenne (S3). Results The second system showed the best performance in reducing solids as well as in nutrients (TN, TP, and COD) reduction. The removal rates for TS, TN, and TP were negatively correlated with the loading regimes, with 0.5 L/hour being the most efficient and thus taken as the reference. Conclusions Solids management using a sand/gravel substrate as bed culture and Lolium perenne L. as plant biofilter has proved to be an efficient technique for solids reduction with low operating cost. This grass plays an important role in wastewater eco-treatment by absorbing dissolved pollutants (TAN) as nutrients for its growth.展开更多
This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear proper...This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear properties and uncertainties make the conven- tional feedback proportional-integral-derivative control not yield to high-performance requirements. In this paper, a nonlinear system model is derived and linear parameterization is made for adaptive control. Then a discontinuous projection-based nonlin- ear adaptive robust force controller is developed for hydraulic load simulator. The proposed controller constructs an asymptoti- cally stable adaptive controller and adaptation laws, which can compensate for the system nonlinearities and uncertain parame- ters. Meanwhile a well-designed robust controller is also developed to cope with the hydraulic system uncertain nonlinearities. The controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncer- tainties and uncertain nonlinearities; in the absence of uncertain nonlinearities, the scheme also achieves asymptotic tracking performance. Simulation and experiment comparative results are obtained to verify the high-performance nature of the proposed control strategy and the tracking accuracy is greatly improved.展开更多
This paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obsta...This paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obstacles in putting forward appropriate requirements of HLS. Traditional research overemphasizes the optimization of parameters and methods for HLS controllers. It lacks deliberation because experimental results and project experiences indicate different ultimate performance of a specific HLS. When the actuator paired with this HLS is replaced, the dynamic response and tracing precision of this HLS also change, and sometimes the whole system goes so far as to lose control. Based on the influence analysis of the preceding phenomena, a theory about matching design of aerocraft actuator with HLS is presented, together with two paired new concepts of "Standard Actuator" and "Standard HLS". Further research leads to seven important conclusions of matching design, which suggest that appropriate stiffness and output torque of HLS should be carefully designed and chosen for an actuator. Simulation results strongly support that the proposed principle of matching design can be anticipated to be one of the design criteria for HLS, and successfully used to explain experimental phenomena and project experiences.展开更多
Three lab-scale vertical-flow constructed wetlands (VFCWs), including the non-aerated (NA), intermittently aerated (IA) and continuously aerated (CA) ones, were operated at different hydraulic loading rates (...Three lab-scale vertical-flow constructed wetlands (VFCWs), including the non-aerated (NA), intermittently aerated (IA) and continuously aerated (CA) ones, were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water. Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA, which significantly favored the removal of organic matter and NH4+-N. The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN). Although the removal efficiencies of CODEr, NH4+-N and TN in the three VFCWs all decreased with an increase in HLR, artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings. The maximal removal efficiencies of CODEr, NH4+-N and total phosphorus (TP) (i.e., 81%, 87% and 37%, respectively) were observed in CA at 19 cm/day HLR, while the maximal TN removal (i.e., 57%) was achieved in IA. Although the improvement of artificial aeration on TP removal was limited, this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted river water, particularly at a high HLR.展开更多
Modeling of wastewater transport and degradation in soil aquifer is a problem of concern with regard to the optimization of design and operation of the wastewater soil treatment system. To solve this problem, three-di...Modeling of wastewater transport and degradation in soil aquifer is a problem of concern with regard to the optimization of design and operation of the wastewater soil treatment system. To solve this problem, three-dimensional groundwater flow and wastewater transport and degradation model was developed using MODFLOW and MT3DMS modeling. The developed model was calibrated using the Soil Infiltration Treatment System (SITS) in the Chongming island of China after considering the river-groundwater interaction and the regional geological and hydrological conditions. Using the calibrated model, the following problems with regard to the design and operation of SITS were discussed: (1) Allowable hydraulic load. The hydraulic load increases with the drop in the water level of the adjoining river, the increase in the actual soil area under operation, and the increase in the distance among the individual operation units of SITS. (2) Optimized layout of the groundwater monitoring wells. The concentration contour of the simulated contaminants is very useful to depict the typical areas that are most severely polluted and very sensitive to the peripheral environment,, thus lesser number of monitoring wells can be set up based on the model, and the goal of the accurate assessment of the influence of soil-infiltrated wastewater on groundwater can be achieved.展开更多
Eutrophication caused by high concentrations of nutrients is a huge problem for many natural lakes and reservoirs. Removing the nitrogen contamination from the low C/N water body has become an urgent need. Autotrophic...Eutrophication caused by high concentrations of nutrients is a huge problem for many natural lakes and reservoirs. Removing the nitrogen contamination from the low C/N water body has become an urgent need. Autotrophic denitrification with the sulfur compound as electron donor was investigated in the biofilter reactors. Through the lab-scale experiment,it was found that different sulfur compounds and different carriers caused very different treatment performances. Thiosulfate was selected to be the best electron donor and ceramsite was chosen as the suitable carrier due to the good denitrification efficiency, low cost and the good resistibility against the high hydraulic loads. Later the optimum running parameters of the process were determined. Then the pilot-scale experiment was carried out with the real micro-polluted water from the West Lake, China. The results indicated that the autotrophic denitrification with thiosulfate as electron donor was feasible and applicable for the micro-polluted lake water.展开更多
基金Supported by National Natural Science Foundation of China(41071214)~~
文摘[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulated vertical flow arti-ficial wetland, set four hydraulic load level at 50, 100, 150 and 200 cm/d, to identify the impact of hydraulic loading on wetland clogging and to explore the factors run-ning threshold. [Result] The results show that the different levels of hydraulic loading have greater impact; in the constructed wetland clogging process under high hy-draulic loading of 200 cm/d, the effective life was only six months, and the single factor can be speculated that the threshold of the hydraulic load should be at 100-150 cm/d; system can last for six months at low hydraulic loading and last for three months at medium hydraulic load. [Conclusion] The research provides references for wetland clogging experiments in future.
基金supported by the National Natural Science Foundation of China(Grant No.51108275)the Program for Liaoning Excellent Talents in Universities(LNET)(Grant No.LJQ2012101)+2 种基金the Program for New Century Excellent Talents in Universities(Grant No.NCET-11-1012)the Science and Technology Program of Liaoning Province(Grants No.2011229002 and2013229012)the Basic Science Research Fund in Northeastern University(Grants No.N130501001 and N140105003)
文摘In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
基金Funded by the National Key Technologies R & D Program of China During the 10th Five-Year Plan Periods of China (No.2001BA604A01-03).
文摘A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has the function of nitrification and removing organic substrate. In this study, we focused on the denitrification performance of LBAF and its possible mechanism under thorough aeration. We identified the existence of simultaneous nitrification and denitrification (SND) by analyzing nitrogenous compounds along the flow path of LBAF and supportive microbial microscopy, and studied the effects of air/water ratio and hydraulic loading on the performance of nitrogen removal and on SND in LBAF to find out the optimal operation condition. It is found that for saving operation cost, aeration can be reduced to some degree that allows desirable removal efficiency of pollutants, and the optimal air/water ratio is 10:1. Hydraulic loading less than 0.43 m h?1 hardly affects the nitrification and denitrification performance; whereas higher hydraulic loading is unfavorable to both nitrification and denitrification, far more unfavorable to denitrification than to nitrification.
文摘Wastewater reforming was done rationally on technological process and equipment for treating Vitamin C wastewater with full scale UBF. High concentration wastewater was mixed with recycle effluent from anaerobic treatment, so influent COD was reduced and total alkalinity was increased, meanwhile, appropriate hydraulic loading to the reactor was controlled during its running, thus treatment capacity of reactor was improved. Volumetric loading rate was raised from 6 0 kg COD/(m 3·d) to 10 0 kg COD/(m 3·d), biogas production rate was raised from 1 8 m 3/(m 3·d) to 3 2 m 3/(m 3·d), the amount of alkali and dilution water for adjusting pH were also reduced.
基金supported by Zhejiang Provincial Technology Department, China (No. 2005C22060).
文摘Objective This work is an evaluation of the efficiency of a sand-gravel or unwoven fabric bed system and Lolium perenne Lam as plant biofilter in the reduction of solids and nutrients removal from aquaculture discharge water. Methods The fzrst step consisted of the collection of wastewater in the tank and the distribution at three different hydraulic loading regimes (0.5, 1, 1.5 L/hour) to the different experimental systems. The second step was to evaluate the performance of the different systems. The fzrst system consisted of a bucket filled with a substrate of sand/gravel (20 cm in depth), on the bottom of which was a 80 mesh/inch2 of nylon (S1); the second was similar, but was planted with Lolium perenne lam (S2); the third was planted with a grass plate consisting of 7 layers of unwoven fabric planted with L. perenne (S3). Results The second system showed the best performance in reducing solids as well as in nutrients (TN, TP, and COD) reduction. The removal rates for TS, TN, and TP were negatively correlated with the loading regimes, with 0.5 L/hour being the most efficient and thus taken as the reference. Conclusions Solids management using a sand/gravel substrate as bed culture and Lolium perenne L. as plant biofilter has proved to be an efficient technique for solids reduction with low operating cost. This grass plays an important role in wastewater eco-treatment by absorbing dissolved pollutants (TAN) as nutrients for its growth.
基金National Natural Science Foundation for Distinguished Young Scholars of China (50825502)
文摘This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear properties and uncertainties make the conven- tional feedback proportional-integral-derivative control not yield to high-performance requirements. In this paper, a nonlinear system model is derived and linear parameterization is made for adaptive control. Then a discontinuous projection-based nonlin- ear adaptive robust force controller is developed for hydraulic load simulator. The proposed controller constructs an asymptoti- cally stable adaptive controller and adaptation laws, which can compensate for the system nonlinearities and uncertain parame- ters. Meanwhile a well-designed robust controller is also developed to cope with the hydraulic system uncertain nonlinearities. The controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncer- tainties and uncertain nonlinearities; in the absence of uncertain nonlinearities, the scheme also achieves asymptotic tracking performance. Simulation and experiment comparative results are obtained to verify the high-performance nature of the proposed control strategy and the tracking accuracy is greatly improved.
基金the Aviation Science Foundation (No. 20110951009) of ChinaNational Nature Science Foundation for Distinguished Young Scholars ( No. 50825502 ) of China for the financial support
文摘This paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obstacles in putting forward appropriate requirements of HLS. Traditional research overemphasizes the optimization of parameters and methods for HLS controllers. It lacks deliberation because experimental results and project experiences indicate different ultimate performance of a specific HLS. When the actuator paired with this HLS is replaced, the dynamic response and tracing precision of this HLS also change, and sometimes the whole system goes so far as to lose control. Based on the influence analysis of the preceding phenomena, a theory about matching design of aerocraft actuator with HLS is presented, together with two paired new concepts of "Standard Actuator" and "Standard HLS". Further research leads to seven important conclusions of matching design, which suggest that appropriate stiffness and output torque of HLS should be carefully designed and chosen for an actuator. Simulation results strongly support that the proposed principle of matching design can be anticipated to be one of the design criteria for HLS, and successfully used to explain experimental phenomena and project experiences.
基金support from the Ministry of Environmental Protection (No.2008ZX07101-006-08)the Ministry of Science and Technology of China (No. 2009BAC57B02)
文摘Three lab-scale vertical-flow constructed wetlands (VFCWs), including the non-aerated (NA), intermittently aerated (IA) and continuously aerated (CA) ones, were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water. Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA, which significantly favored the removal of organic matter and NH4+-N. The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN). Although the removal efficiencies of CODEr, NH4+-N and TN in the three VFCWs all decreased with an increase in HLR, artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings. The maximal removal efficiencies of CODEr, NH4+-N and total phosphorus (TP) (i.e., 81%, 87% and 37%, respectively) were observed in CA at 19 cm/day HLR, while the maximal TN removal (i.e., 57%) was achieved in IA. Although the improvement of artificial aeration on TP removal was limited, this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted river water, particularly at a high HLR.
基金Project supported by the China State High Tech Project -"863" Project (Grant No: 2003 AA 601020)
文摘Modeling of wastewater transport and degradation in soil aquifer is a problem of concern with regard to the optimization of design and operation of the wastewater soil treatment system. To solve this problem, three-dimensional groundwater flow and wastewater transport and degradation model was developed using MODFLOW and MT3DMS modeling. The developed model was calibrated using the Soil Infiltration Treatment System (SITS) in the Chongming island of China after considering the river-groundwater interaction and the regional geological and hydrological conditions. Using the calibrated model, the following problems with regard to the design and operation of SITS were discussed: (1) Allowable hydraulic load. The hydraulic load increases with the drop in the water level of the adjoining river, the increase in the actual soil area under operation, and the increase in the distance among the individual operation units of SITS. (2) Optimized layout of the groundwater monitoring wells. The concentration contour of the simulated contaminants is very useful to depict the typical areas that are most severely polluted and very sensitive to the peripheral environment,, thus lesser number of monitoring wells can be set up based on the model, and the goal of the accurate assessment of the influence of soil-infiltrated wastewater on groundwater can be achieved.
基金supported by the National Natural Science Foundation of China (No. 51478262)The Chinese National Key Projects of Water Pollution Control and Reclamation (No. 2012ZX07101-007-005)the Open Fund Project of Zhejiang Mariculture Research Institute (No. J2013005)
文摘Eutrophication caused by high concentrations of nutrients is a huge problem for many natural lakes and reservoirs. Removing the nitrogen contamination from the low C/N water body has become an urgent need. Autotrophic denitrification with the sulfur compound as electron donor was investigated in the biofilter reactors. Through the lab-scale experiment,it was found that different sulfur compounds and different carriers caused very different treatment performances. Thiosulfate was selected to be the best electron donor and ceramsite was chosen as the suitable carrier due to the good denitrification efficiency, low cost and the good resistibility against the high hydraulic loads. Later the optimum running parameters of the process were determined. Then the pilot-scale experiment was carried out with the real micro-polluted water from the West Lake, China. The results indicated that the autotrophic denitrification with thiosulfate as electron donor was feasible and applicable for the micro-polluted lake water.