期刊文献+
共找到1,251篇文章
< 1 2 63 >
每页显示 20 50 100
Decoupling Analysis for a Powertrain Mounting System with a Combination of Hydraulic Mounts 被引量:7
1
作者 HU Jinfang CHEN Wuwei HUANG He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期737-745,共9页
The existing torque roll axis(TRA) decoupling theories for a powertrain mounting system assume that the stiffness and viscous damping properties are constant. However, real-life mounts exhibit considerable spectrally ... The existing torque roll axis(TRA) decoupling theories for a powertrain mounting system assume that the stiffness and viscous damping properties are constant. However, real-life mounts exhibit considerable spectrally varying stiffness and damping characteristics, and the influence of the spectrally-varying properties of the hydraulic mounts on the powertrain system cannot be ignored. To overcome the deficiency, an analytical quasi-linear model of the hydraulic mount and the coupled properties of the powertrain and hydraulic mounts system are formulated. The influence of the hydraulic mounts on the TRA decoupling of a powertrain system is analytically examined in terms of eigensolutions, frequency, and impulse responses, and then a new analytical axiom is proposed based on the TRA decoupling indices. With the experimental setup of a fixed decoupler hydraulic mount in the context of non-resonant dynamic stiffness testing procedure, the quasi-linear model of the hydraulic mount is verified by comparing the predictions with the measurement. And the quasi-linear formulation of the coupled system is also verified by comparing the frequency responses with the numerical results obtained by the direct inversion method. Finally, the mounting system with a combination of hydraulic mounts is redesigned in terms of the stiffness, damping and mount locations by satisfying the new axiom. The frequency and time domain results of the redesigned system demonstrate that the torque roll axis of the redesigned powertrain mounting system is indeed decoupled in the presence of hydraulic mounts (given oscillating torque or impulsive torque excitation). The proposed research provides an important basis and method for the research on a powertrain system with spectrally-varying mount properties, especially for the TRA decoupling. 展开更多
关键词 hydraulic mount coupled quasi-linear system motion control TRA decoupling
下载PDF
Dynamics of electromagnetic slip coupling for hydraulic power steering application and its energy-saving characteristics 被引量:2
2
作者 唐斌 江浩斌 +2 位作者 徐哲 耿国庆 徐兴 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1994-2000,共7页
To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulate... To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS. 展开更多
关键词 heavy-duty vehicle hydraulic power steering system electromagnetic slip coupling DYNAMICS energy saving
下载PDF
Core and blanket thermal-hydraulic analysis of a molten salt fast reactor based on coupling of OpenMC and OpenFOAM 被引量:8
3
作者 Bin Deng Yong Cui +5 位作者 Jin-Gen Chen Long He Shao-Peng Xia Cheng-Gang Yu Fan Zhu Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第9期1-15,共15页
In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released... In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released from the fuel salt and transferred to the second loop by fuel salt circulation.Therefore,the MSFR is characterized by strong interaction between the neutronics and the thermal hydraulics.Moreover,recirculation flow occurs,and nuclear heat is accumulated near the fertile blanket,which significantly affects both the flow and the temperature fields in the core.In this work,to further optimize the conceptual geometric design of the MSFR,three geometries of the core and fertile blanket are proposed,and the thermal-hydraulic characteristics,including the three-dimensional flow and temperature fields of the fuel and fertile salts,are simulated and analyzed using a coupling scheme between the open source codes OpenMC and OpenFOAM.The numerical results indicate that a flatter core temperature distribution can be obtained and the hot spot and flow stagnation zones that appear in the upper and lower parts of the core center near the reflector can be eliminated by curving both the top and bottom walls of the core.Moreover,eight cooling loops with a total flow rate of0.0555 m3 s-1 ensur an acceptable temperature distribusure an acceptable temperature distribution in the fertile blanket. 展开更多
关键词 Molten salt fast reactor Core and blanket thermal-hydraulic analysis Neutronics and thermal hydraulics coupling
下载PDF
Friction coupling vibration characteristics analysis of aviation hydraulic pipelines considering multi factors 被引量:4
4
作者 Quan Lingxiao Guo Meng +2 位作者 Shi Junqiang Jiao Zongxia Guo Changhong 《High Technology Letters》 EI CAS 2018年第2期180-188,共9页
As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed... As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft. 展开更多
关键词 aviation hydraulic pipeline fluid-structure interaction vibration friction coupling fluid parameters frequency domain characteristics
下载PDF
Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor 被引量:1
5
作者 杨秀清 骆敏舟 +1 位作者 梅涛 姚达毛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第3期334-340,共7页
The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision character... The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform. 展开更多
关键词 CO-SIMULATION mechanical-hydraulic coupling PID control of integral separation hydraulic synchronization servo system
下载PDF
Modeling and Simulation of Power Coupling System in Hydraulic Hybrid City Bus
6
作者 Xunming Li Jinyu Qu +1 位作者 Wei Wei Xiangyu Tian 《Energy and Power Engineering》 2014年第6期119-132,共14页
In order to solve the coupling problem of power in Hydraulic Hybrid City Bus (HHB), a hydraulic hybrid power coupling system based on planetary gear transmission principle is proposed in this paper. The system consist... In order to solve the coupling problem of power in Hydraulic Hybrid City Bus (HHB), a hydraulic hybrid power coupling system based on planetary gear transmission principle is proposed in this paper. The system consists of diesel engine, power coupler, hydraulic pump/motor, etc. The realizable operating modes of power coupling system are analyzed in this paper. Under coordination of clutches, the engine driven mode, hydraulic driven mode, hybrid driven mode, hydraulic engine-start mode and braking energy recovery mode are realizable. Based on Lagrange equation, kinetic analysis and kinematics analyses are presented. In addition, the simulation model of the power coupling system is proposed, which includes diesel engine model, power coupler model, hydraulic pump/motor model, etc. The example simulation analysis is proposed under the hybrid driven mode;the results show that the power coupling system proposed in this paper can realize power coupling of hydraulic hybrid city bus. Compared with traditional city bus, the hydraulic hybrid city bus can choose small-displacement engine so as to improve fuel economy and dynamic property. 展开更多
关键词 HHB POWER coupling System PLANETARY GEAR Trans hydraulic STARTING
下载PDF
Analysis of the Oscillating Mechanism of an Aerial Work Platform Based on ADAMS Hydraulic-Mechanical Coupling Simulation 被引量:2
7
作者 GU De-jun TENG Ru-min +2 位作者 GAO Shun-de BAI Ri GAO Kai-qing 《International Journal of Plant Engineering and Management》 2008年第3期154-158,共5页
Rigid model of the aerial work platform and hydraulic model of the oscillating mechanism were established with ADAMS. The simulation of two parameters, cy-linder force and oil chamber pressure, was carried out. The si... Rigid model of the aerial work platform and hydraulic model of the oscillating mechanism were established with ADAMS. The simulation of two parameters, cy-linder force and oil chamber pressure, was carried out. The simulation result is useful to the design of the oscillating mechanism. 展开更多
关键词 aerial work platform oscillating mechanism hydraulic-mechanical coupling simulation
下载PDF
Mechanisms of fracture propagation from multi-cluster using a phase field based HMD coupling model in fractured reservoir
8
作者 Yun-Jin Wang Bo Wang +6 位作者 Hang Su Tu Chang Ren-Cheng Dong Li-Zhe Li Wei-Yu Tang Ting-Xue Jiang Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1829-1851,共23页
Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recogni... Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recognized as significant factors affecting hydraulic fracture(HF)propagation,the combined influence of these factors remains poorly understood.To address this knowledge gap,a novel coupled hydromechanical-damage(HMD)model based on the phase field method is developed to investigate the propagation of multi-cluster HFs in fractured reservoirs.The comprehensive energy functional and control functions are established,while incorporating dynamic fluid distribution between multiple perforation clusters and refined changes in rock mechanical parameters during hydraulic fracturing.The HMD coupled multi-cluster HF propagation model investigates various scenarios,including single HF and single NF,reservoir heterogeneity,single HF and NF clusters,and multi-cluster HFs with NF clusters.The results show that the HMD coupling model can accurately capture the impact of approach angle(θ),stress difference and cementation strength on the interaction of HF and NF.The criterion of the open and cross zones is not fixed.The NF angle(a)is not a decisive parameter to discriminate the interaction.According to the relationship between approach angle(θ)and NF angle(a),the contact relationship of HF can be divided into three categories(θ=a,θ<a,andθ>a).The connected NF can increase the complexity of HF by inducing it to form branch fracture,resulting in a fractal dimension of HF as high as2.1280 at angles of±45°.Inter-fracture interference from the heel to the toe of HF shows the phenomenon of no,strong and weak interference.Interestingly,under the influence of NFs,distant HFs from the injection can become dominant fractures.However,as a gradually increases,inter-fracture stress interference becomes the primary factor influencing HF propagation,gradually superseding the dominance of NF induced fractures. 展开更多
关键词 HMD coupling Phase field Natural fracture Flow distribution hydraulic fracturing Inter-fracture interference
下载PDF
Adjacent mode resonance of a hydraulic pipe system consisting of parallel pipes coupled at middle points 被引量:2
9
作者 Xin FAN Changan ZHU +1 位作者 Xiaoye MAO Hu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期363-380,共18页
The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pi... The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system. 展开更多
关键词 hydraulic pipe system coupling vibration adjacent mode coupling parallel pipe conveying fluid harmonic balance method(HBM)
下载PDF
Hydrodynamic Response of A Fully Coupled TLP Hull-TTR System with Detailed Modeling of A Hydraulic Pneumatic Tensioner and Riser Joints
10
作者 HAO Shuai YU Yang +2 位作者 YU Jian-xing YUAN Zhi-ming XU Li-xin 《China Ocean Engineering》 SCIE EI CSCD 2022年第3期451-463,共13页
Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull... Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull.Owing to the complicated configuration of the tensioners,the hull and TTRs form a strong coupled system.Traditionally,some simplified tensioner models are applied to analyze the TLP structures.There is a large discrepancy between their analysis results and the actual mechanism behaviors of a tensioner.It is very necessary to develop a more detailed tensioner model to consider the coupling effects between TLP and TTRs.In the present study,a fully coupled TLP hull-TTR system for hydrodynamic numerical simulation is established.A specific hydraulic pneumatic tensioner is modeled by considering 4 cylinders.The production TTR model is stacked up by specific riser joints.The simulation is also extended to analyze an array of TTRs.Different regular and irregular waves are considered.The behaviors of different cylinders are presented.The results show that it is important to consider the specific configurations of the tensioner and TTRs,which may lead to obviously different response behaviors,compared with those from a simplified model. 展开更多
关键词 top tension riser(TTR) fully coupled hull-tendon-TTR-tensioner model hydraulic pneumatic tensioner hydrodynamic response 3D potential flow theory
下载PDF
Simulation Analysis of Torsion Beam Hydroforming Based on the Fluid-Solid Coupling Method 被引量:2
11
作者 Yu Huang Jian Li +2 位作者 Jiachun Yang Yongdong Peng Weixuan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期139-156,共18页
Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hyd... Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam. 展开更多
关键词 Fluid-solid coupling hydraulic expansion Rectangular tube Torsional beam Wall thickness distribution
下载PDF
Theory and application of rock burst prevention using deep hole high pressure hydraulic fracturing 被引量:3
12
作者 Shan-Kun ZHAO Jun LIU +3 位作者 Xiang-Zhi WEI Chuan-Hong DING Yu-Lei LV Gang-Feng LI 《Journal of Coal Science & Engineering(China)》 2013年第2期136-142,共7页
In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer u... In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software. In addition, the effects of rock burst control are tested using multiple methods, either in the stress field or in the energy field. The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas, the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction. High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure, while also weakening the physical and mechanical properties of coal and rock. Therefore the impact of high stress concentration in hazardous areas will level off, which has an effect on rock burst prevention and control in the region. 展开更多
关键词 rock burst deep hole high pressure hydraulic fracturing seepage-stress coupling models stress concentration factor
下载PDF
ON INFLUENCE OF KINEMATICS TO EQUIVALENT LINEAR DAMPING OF HELICOPTER BLADE HYDRAULIC DAMPER
13
作者 胡国才 向锦武 张晓谷 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第8期922-930,共9页
An analytical model of hydraulic damper was presented in forward flight accounting for pitch/flap/lag kinematic coupling and its nonlinear force-velocity curve. The fourth order Runge-Kutta was applied to calculate th... An analytical model of hydraulic damper was presented in forward flight accounting for pitch/flap/lag kinematic coupling and its nonlinear force-velocity curve. The fourth order Runge-Kutta was applied to calculate the damper axial velocity in time domain. Fourier series based moving block analysis was applied to calculate equivalent linear damping in terms of transient responses of damper axial velocity. Results indicate that equivalent linear damping will be significantly reduced if pitch/flap/lag kinematic coupling introduced for notional model and flight conditions. 展开更多
关键词 nonlinear damping hydraulic damper equivalent linear damping helicopter rotor blade kinematic coupling
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis 被引量:1
14
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
Backstepping adaptive control of hydraulic Stewart platform using dynamic surface
15
作者 唐建林 袁立鹏 赵克定 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期106-110,共5页
Hydraulic Stewart platform is characterized by nonlinearity for driving system in essence,severe load coupling among the legs,which bring a great difficulty for controller design and performance improvement.Afore cont... Hydraulic Stewart platform is characterized by nonlinearity for driving system in essence,severe load coupling among the legs,which bring a great difficulty for controller design and performance improvement.Afore controller research is either low in tracking performance and movement smoothness when it ignores the nonlinearity and dynamics coupling,or complex in algorithm and has the need of acceleration feedback or observer when the dynamics coupling and nonlinearity is included.To solve the dilemma,a new controller,backstepping adaptive control of hydraulic Stewart platform using dynamic surface is put forward based on the complete dynamics including the upper platform dynamics and hydraulic nonlinearity in driving system.Asymptotic stability of the whole system is proved by Lyapunov method.The proposed algorithm is simple by avoiding the use of acceleration.The simulation results indicate that the control algorithm performs better than the normal PID controller in control precision,dynamic response and depression of the cross coupling. 展开更多
关键词 hydraulic Stewart platform dynamics coupling dynamic surface backstepping adaptive control asymptotic stability
下载PDF
Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method
16
作者 Qingyun Zeng Mingxin Zheng Dan Huang 《Fluid Dynamics & Materials Processing》 EI 2023年第12期2981-3005,共25页
A complex interface exists between waterflow and solid particles during hydraulic soil erosion.In this study,the particle discrete element method(DEM)has been used to simulate the hydraulic erosion of a granular soil ... A complex interface exists between waterflow and solid particles during hydraulic soil erosion.In this study,the particle discrete element method(DEM)has been used to simulate the hydraulic erosion of a granular soil under moving bed conditions and surrounding terrain changes.Moreover,the weakly compressible smoothed particle hydrodynamics(WCSPH)approach has been exploited to simulate the instability process of the free surfacefluid and its propagation characteristics at the solid–liquid interface.The influence of a suspended medium on the waterflow dynamics has been characterized using the mixed viscosity concept accounting for the solid–liquid mixed particle volume ratio.Numerical simulations of wall-jet scouring and reservoir sedimentflushing on a mobile bed were performed and validated with experiments.The results show that the proposed WCSPH–DEM coupling model is highly suitable for determining parameters,such as the local maximum scour depth,the scour pit width,and the sand bed profile.The effects on the hydraulic erosion process of two important para-meters of the mixed viscosity coefficient(initial solid volume concentration and initial viscosity coefficient)are also discussed to a certain extent in this study. 展开更多
关键词 hydraulic soil erosion WCSPH-DEM coupling model suspended medium mixed viscosity coefficient
下载PDF
土壤冻融过程中的水热参数化方案研究进展
17
作者 侯雅 李伟平 左金清 《高原气象》 北大核心 2025年第1期1-15,共15页
冻土是陆地冰冻圈的重要组成部分,其冻融循环变化能够影响土壤结构、土壤水热传输以及土壤生物化学等过程,并通过陆-气相互作用影响局地甚至全球天气气候。因此,研究土壤冻融过程对冻土区人类生产生活和了解区域外天气气候变化具有重要... 冻土是陆地冰冻圈的重要组成部分,其冻融循环变化能够影响土壤结构、土壤水热传输以及土壤生物化学等过程,并通过陆-气相互作用影响局地甚至全球天气气候。因此,研究土壤冻融过程对冻土区人类生产生活和了解区域外天气气候变化具有重要的科学意义。本文回顾了土壤中的砾石、有机质对土壤冻融过程的影响及物理机制,总结了土壤冻融过程中水热参数化的相关研究成果,包括土壤导热率和水力学参数的计算、水热耦合方案以及冻融锋面计算方案等。相对于普通的矿物质土粒而言,砾石具有高导热率和低热容,有机质具有低导热率和高热容,他们对热量在土壤中的传输及土壤温度垂直分布有不同的影响。另外,砾石和有机质的存在改变了土壤孔隙度、土壤基质毛细作用与吸附作用,进而影响水分在土壤中的传输过程和垂直分布。已有研究表明:(1)当前大部分数值模式中土壤导热率采用Johansen方案及其派生方案进行计算,其中Balland-Arp方案考虑了砾石和有机质对土壤导热率的影响,该方案更好地刻画了土壤冻融过程中土壤导热率变化的连续性;综合考虑热-水-变形相互作用的导热率参数化方案可以较好地刻画土壤冻融过程中的水热耦合和土体冻胀的作用,对相变过程中土壤导热率变化特征的模拟更符合实际观测。(2)过冷水参数化方案刻画了土壤液态水在0℃以下存在的事实;相变温度方案描述了土壤相变温度低于0℃且不固定的事实;导水阻抗方案考虑了土壤冻结对土壤水分下渗的阻抗作用,改善了对冻土区水文过程的模拟效果。(3)土壤冻融过程伴随着水分的相变和能量的转化,水热耦合方案的发展能够较好地刻画土壤中热力-水文过程的协同变化特征,细化了对冻融过程中水分和能量相互作用的复杂物理机制的描述。(4)等温框架的数值模式通过模拟每层土壤中间深度的冻融过程代表该模式分层的整体特征,导致对冻融深度的严重高估或低估,尤其是对厚度较大的模式深层土壤,冻融锋面计算方案的提出和应用减小了这种模拟偏差。目前土壤冻融参数化方案的不足之处包括:绝大多数数值模式没有考虑土壤盐分导致土壤水的冰点降低这一事实;虽然大部分数值模式考虑了土壤有机质对土壤水、热传输的影响,但是模式中对土壤有机质含量及垂直分布的考虑与植被根系的生长状态脱节;模式模拟的土壤深度不足并且下边界通量为零的假定不符合实际情况。发展土壤溶质传输参数化方案以模拟盐分的分布、刻画植被根系生长过程和土壤有机质的分布特征、考虑深层土壤对浅层的热力学影响并完善数值模式中的下边界条件,这些是未来陆面模式改进土壤冻融过程模拟的可能方向。 展开更多
关键词 土壤冻融过程 参数化方案 土壤导热率 土壤水文参数 冻融锋 水热耦合
下载PDF
混流式水轮机压力脉动及叶片裂纹生长分析
18
作者 姬中瑞 曲力涛 +2 位作者 迟福东 陈小翠 杨春明 《三峡大学学报(自然科学版)》 CAS 北大核心 2025年第1期99-105,共7页
目前,水轮机转轮叶片出现裂纹甚至脱落的情况时有发生,严重影响了电站的安全运行.本文以某水电站机组为研究对象,基于流固耦合理论和扩展有限元方法对该水轮机全流道及转轮结构进行仿真分析,提取不同运行工况下转轮叶片的压力脉动信息,... 目前,水轮机转轮叶片出现裂纹甚至脱落的情况时有发生,严重影响了电站的安全运行.本文以某水电站机组为研究对象,基于流固耦合理论和扩展有限元方法对该水轮机全流道及转轮结构进行仿真分析,提取不同运行工况下转轮叶片的压力脉动信息,进行其转轮结构强度及叶片疲劳裂纹扩展情况分析.研究表明转轮内部的压力脉动主要由转轮旋转、导叶出口不均匀流场以及低频尾水涡带所引起.在不同运行工况下,叶片所受应力分布大致相同,且均在叶片出水边与上冠以及下环交接处附近存在应力集中的现象.当转轮出水边靠近下环连接处出现裂纹时,裂纹会从出水边逐渐向转轮下环附近扩展,并最终发展为贯穿性裂纹.且叶片出现贯穿性裂纹所经历的载荷循环次数与应力大小以及裂纹的扩展形状有关. 展开更多
关键词 水轮机转轮 单向流固耦合 压力脉动 强度分析 疲劳裂纹扩展 疲劳寿命分析
下载PDF
Coupled Inversion of Pressure and Tiltmeter Data for Mapping Hydraulic Fracture Geometry 被引量:1
19
作者 Zuorong Chen Xiaofang Jiang +1 位作者 Zhejun Pan Robert G.Jeffrey 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第3期396-405,共10页
Pressure and tilt data are jointly inverted to simultaneously map the orientation and dimensions of a hydraulic fracture.The deformation induced by a fracture under internal pressure is modeled using the distributed d... Pressure and tilt data are jointly inverted to simultaneously map the orientation and dimensions of a hydraulic fracture.The deformation induced by a fracture under internal pressure is modeled using the distributed dislocation technique.The planar fracture is represented by four quarter ellipses,joined at the center and sharing semi-axes.This configuration provides a straightforward model for characterizing asymmetric fracture geometry.The inverse problem of mapping the fracture geometry is formulated using the Bayesian probabilistic method,combining the a priori information on the fracture model with updated information from pressure and tilt data.Solving the nonlinear inverse problem is achieved by pseudo-randomly sampling the posterior probability distribution through the Markov chain Monte Carlo method.The resulting posterior probability distribution is then explored to assess uncertainty,resolution,and correlation between model parameters.Numerical experiments are conducted to verify the accuracy and validity of the proposed analysis method in mapping the fracture geometry using synthetic pressure and tilt data. 展开更多
关键词 hydraulic fracture mapping coupled inversion TILT Treating pressure
原文传递
主斜井带式输送机软驱动技术浅析
20
作者 徐锐祥 朱文焱 +2 位作者 张荣 高刚刚 陆学斌 《煤矿机械》 2025年第1期92-95,共4页
随着煤矿行业对高效率和环保要求的不断提升,主斜井带式输送机的驱动技术也在不断发展。分析了3种主要的软驱动形式:变频减速驱动方式、液力偶合器驱动方式及永磁直驱方式。对这些驱动方式的工作原理、优缺点及其应用场景进行了综合评估... 随着煤矿行业对高效率和环保要求的不断提升,主斜井带式输送机的驱动技术也在不断发展。分析了3种主要的软驱动形式:变频减速驱动方式、液力偶合器驱动方式及永磁直驱方式。对这些驱动方式的工作原理、优缺点及其应用场景进行了综合评估,这些技术不仅提升了运输效率,还保障了系统运行的稳定性和安全性,是煤矿高效开采的重要技术支撑。 展开更多
关键词 带式输送机 软驱动 变频减速 液力偶合器 永磁直驱
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部