A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was...A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr...展开更多
It is significant to research the impact resistance properties of hydraulic support due to its key support role in the fully mechanized mining face.However,it is difficult for the entire hydraulic support to implement...It is significant to research the impact resistance properties of hydraulic support due to its key support role in the fully mechanized mining face.However,it is difficult for the entire hydraulic support to implement the impact experiment underground and analyze the response characteristic.Therefore,a dynamic impact experiment for the entire hydraulic support was proposed in this paper,where a 1:2 reducedscale model of hydraulic support was designed and its response characteristics under dynamic impact load were analyzed.Firstly,a comprehensive monitoring scheme was proposed to achieve an effective monitoring for dynamic response of hydraulic support.Secondly,a multi-scale impact experiment was carried out for the entire hydraulic support and dynamic behaviors of hydraulic support under the multi-scale impact load were revealed by experimental data.Then a dynamic impact experiment of the entire hydraulic support was simulated in ADAMS with the same experiment conditions,and the experimental and simulation data were verified mutually.Finally,the characteristics of energy conversion and dissipation of the entire experiment system after impact were analyzed.The experiment results showed that the impact resistance properties of hydraulic support largely depended on the initial support conditions and different vertical rigidities affected energy distribution proportion of the entire support system.展开更多
The structure and operational principle on a new type reversing valve of hydraulic breaker are introduced. The nonlinear mathematic model and simulation model of the new type reversing valve are built. The dynamic sim...The structure and operational principle on a new type reversing valve of hydraulic breaker are introduced. The nonlinear mathematic model and simulation model of the new type reversing valve are built. The dynamic simulation research of the new type reversing valve is conducted. The effects of the system parameters on the working performance are researched systematically and deeply. The regular understanding on the motion of the reversing valve is obtained, which provides theoretical basis for the innovation and manufacturing of a new generation of hydraulic breaker reversing valve.展开更多
This paper analyses a control strategy applicable in heaVy-duty hydraulic Systems,namely, the introduction of a servovalve to achieve smoother operation of direCtional-control valves that serve also as flow-control va...This paper analyses a control strategy applicable in heaVy-duty hydraulic Systems,namely, the introduction of a servovalve to achieve smoother operation of direCtional-control valves that serve also as flow-control valves over two fanges of operating conditions. A mathematical model of the dynamics of the System is etallished and design criteria are obtained from a linearised form of that model. The influence of variations in tile axial force on the spool of the main valve is investigated, and the use of the resultS in the design of systems of the proposed kind is discussed.展开更多
In order to improve the impact performance, the structure of hydraulic hammer should be optimized. In this paper, the ranges of eight vital structure parameters of piston and reversing valve system of hydraulic hammer...In order to improve the impact performance, the structure of hydraulic hammer should be optimized. In this paper, the ranges of eight vital structure parameters of piston and reversing valve system of hydraulic hammer were selected firstly;and then found the best value of different parameters under experiments with the method of computer optimization and the parametric analysis method provided by ADAMS software. These methods worked and the best design values of parameters of hydraulic hammer were obtained. At last, the optimal impact energy of virtual prototype of hydraulic breaking hammer was calculated and compared with the original impact performance. The results reveal that impact performance of hydraulic hammer has been improved significantly.展开更多
The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.How...The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.However,the lightweight design of HDU is a huge challenge due to the need for structural strength.This paper is inspired by the geometric shape of fish bones and biomimetic reinforcing ribs on the surface of the HDU shell are designed to increase its strength and reduce its weight.First,a HDU shell with biomimetic fish bone reinforcing ribs structure is proposed.Then,the MATLAB toolbox and ANSYS finite element analysis module are used to optimize the parameters of the biomimetic reinforcing ribs structure and the overall layout of the shell.Finally,the HDU shell is manufactured using additive manufacturing technology,and a performance testing platform is built to conduct dynamic and static performance tests on the designed HDU.The experimental results show that the HDU with biomimetic fish bone reinforcing ribs has excellent dynamic performance and better static performance than the prototype model,and the weight of the shell is reduced by 20%compared to the prototype model.This work has broad application prospects in the lightweight and high-strength design of closed-pressure vessel components.展开更多
基金The authors are grateful to"Chemical Grid Project"of Beijing University of Chemical Technology for providingthe computer facilities.
文摘A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr...
基金supported by National Key R&D Program of China for the 13th Five-Year Plan(No.2017YFC0603005)National Natural Science Foundation of China(Nos.51874174and 51834006)。
文摘It is significant to research the impact resistance properties of hydraulic support due to its key support role in the fully mechanized mining face.However,it is difficult for the entire hydraulic support to implement the impact experiment underground and analyze the response characteristic.Therefore,a dynamic impact experiment for the entire hydraulic support was proposed in this paper,where a 1:2 reducedscale model of hydraulic support was designed and its response characteristics under dynamic impact load were analyzed.Firstly,a comprehensive monitoring scheme was proposed to achieve an effective monitoring for dynamic response of hydraulic support.Secondly,a multi-scale impact experiment was carried out for the entire hydraulic support and dynamic behaviors of hydraulic support under the multi-scale impact load were revealed by experimental data.Then a dynamic impact experiment of the entire hydraulic support was simulated in ADAMS with the same experiment conditions,and the experimental and simulation data were verified mutually.Finally,the characteristics of energy conversion and dissipation of the entire experiment system after impact were analyzed.The experiment results showed that the impact resistance properties of hydraulic support largely depended on the initial support conditions and different vertical rigidities affected energy distribution proportion of the entire support system.
文摘The structure and operational principle on a new type reversing valve of hydraulic breaker are introduced. The nonlinear mathematic model and simulation model of the new type reversing valve are built. The dynamic simulation research of the new type reversing valve is conducted. The effects of the system parameters on the working performance are researched systematically and deeply. The regular understanding on the motion of the reversing valve is obtained, which provides theoretical basis for the innovation and manufacturing of a new generation of hydraulic breaker reversing valve.
文摘This paper analyses a control strategy applicable in heaVy-duty hydraulic Systems,namely, the introduction of a servovalve to achieve smoother operation of direCtional-control valves that serve also as flow-control valves over two fanges of operating conditions. A mathematical model of the dynamics of the System is etallished and design criteria are obtained from a linearised form of that model. The influence of variations in tile axial force on the spool of the main valve is investigated, and the use of the resultS in the design of systems of the proposed kind is discussed.
文摘In order to improve the impact performance, the structure of hydraulic hammer should be optimized. In this paper, the ranges of eight vital structure parameters of piston and reversing valve system of hydraulic hammer were selected firstly;and then found the best value of different parameters under experiments with the method of computer optimization and the parametric analysis method provided by ADAMS software. These methods worked and the best design values of parameters of hydraulic hammer were obtained. At last, the optimal impact energy of virtual prototype of hydraulic breaking hammer was calculated and compared with the original impact performance. The results reveal that impact performance of hydraulic hammer has been improved significantly.
文摘The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.However,the lightweight design of HDU is a huge challenge due to the need for structural strength.This paper is inspired by the geometric shape of fish bones and biomimetic reinforcing ribs on the surface of the HDU shell are designed to increase its strength and reduce its weight.First,a HDU shell with biomimetic fish bone reinforcing ribs structure is proposed.Then,the MATLAB toolbox and ANSYS finite element analysis module are used to optimize the parameters of the biomimetic reinforcing ribs structure and the overall layout of the shell.Finally,the HDU shell is manufactured using additive manufacturing technology,and a performance testing platform is built to conduct dynamic and static performance tests on the designed HDU.The experimental results show that the HDU with biomimetic fish bone reinforcing ribs has excellent dynamic performance and better static performance than the prototype model,and the weight of the shell is reduced by 20%compared to the prototype model.This work has broad application prospects in the lightweight and high-strength design of closed-pressure vessel components.