A hydraulic exciting system with a wave exciter has been constructed in order to study the hydraulic vibra- tion law. The system consists of an oil source, wave-exciter and oil cylinder, and is controlled by a wave-ex...A hydraulic exciting system with a wave exciter has been constructed in order to study the hydraulic vibra- tion law. The system consists of an oil source, wave-exciter and oil cylinder, and is controlled by a wave-exciter. The working principle of the hydraulic exciting system and wave exciter has been analyzed, and its excitation process has been illustrated. The law of every pipe's pressure fluctuation of the system is obtained by experiment. The theo- retical analysis and experimental data prove that the pipeline pressure periodically changes and the pipeline pressure fluctuation frequency is independently controlled by the excitation frequency of the wave-exciter. Every pipelinc's pressure wave is produced by system flow fluctuation and water hammer coupling. The pressure fluctuation rules of the system provide a theoretical basis for the study of the associated liberation system.展开更多
High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,wh...High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.展开更多
The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-ab...The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-absorbing floating body rotates around the hinge point, and the wave energy can be converted into kinetic energy. In this paper, the power take-off system of " Sharp Eagle Ⅱ” wave energy converter (the second generation of " Sharp Eagle”) was studied, which adopts the hydraulic type power take-off system. The 0-1 power generation mode was applied in this system to make the " Sharp Eagle Ⅱ” operate under various wave conditions. The principle of power generation was introduced in detail, and the power take-off system was simulated. Three groups of different movement period inputs were used to simulate three kinds of wave conditions, and the simulation results were obtained under three different working conditions. In addition, the prototype of " Sharp Eagle Ⅱ” wave energy converter was tested on land and in real sea conditions. The experimental data have been collected, and the experimental data and simulation results were compared and validated. This work has laid a foundation for the design and application of the following " Sharp Eagle” series of devices.展开更多
By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on ...By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on May 6 in 2010 in Loudi City of Hunan Province were analyzed.The results showed that MCS was the important influence system for the generation and development of strong precipitation.The equivalent blackbody brightness temperature(TBB) field of satellite inversion could directly reflect the convective activity of cumulus,the precipitation distribution and the intensity characteristics in the rainstorm process.TBB low value belt had the good corresponding relationship with the rainstorm falling zone.The disturbance flow field and the height field which passed Barnes band-pass wave filtering represented that there existed the obvious high-layer anticyclonic circulation and the low-layer cyclonic circulation near the rainstorm zone.The divergence in the high layer and the convergence in the low layer enhanced the occurrence and development of MCS.In addition,the disturbance temperature field revealed the main source of energy which the occurrence and development of strong convective weather needed.展开更多
The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type...The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation.Linear model of the improved high pressure common-rail system(HPCRS)including injector,the pipe connecting common-rail with injector and the hydraulic filter is built.Fuel pressure fluctuation at injector inlet,on which frequency domain analysis is conducted through fast Fourier transformation,is acquired at different target pressure and different damping hole diameter experimentally.The linear model is validated and can predict the natural frequencies of the system.Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model,and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists.Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally,and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter.The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode,and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode.Fuel mass of a single injection increases with the increasing of the damping hole diameter.The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.展开更多
基金supported by National Natural Science Foundation of China under Grant No.50775154Shanxi Province Science Foundation of China under Grant No.2011011026-2
文摘A hydraulic exciting system with a wave exciter has been constructed in order to study the hydraulic vibra- tion law. The system consists of an oil source, wave-exciter and oil cylinder, and is controlled by a wave-exciter. The working principle of the hydraulic exciting system and wave exciter has been analyzed, and its excitation process has been illustrated. The law of every pipe's pressure fluctuation of the system is obtained by experiment. The theo- retical analysis and experimental data prove that the pipeline pressure periodically changes and the pipeline pressure fluctuation frequency is independently controlled by the excitation frequency of the wave-exciter. Every pipelinc's pressure wave is produced by system flow fluctuation and water hammer coupling. The pressure fluctuation rules of the system provide a theoretical basis for the study of the associated liberation system.
基金The National Natural Science Foundation of China under contract No.61362002the Marine Scientific Research Special Funds for Public Welfare of China under contract No.201505002
文摘High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13040202)the Special Funding Program for Marine Renewable Energy of the State Oceanic Administration(Grant No.GHME2017SF01)
文摘The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-absorbing floating body rotates around the hinge point, and the wave energy can be converted into kinetic energy. In this paper, the power take-off system of " Sharp Eagle Ⅱ” wave energy converter (the second generation of " Sharp Eagle”) was studied, which adopts the hydraulic type power take-off system. The 0-1 power generation mode was applied in this system to make the " Sharp Eagle Ⅱ” operate under various wave conditions. The principle of power generation was introduced in detail, and the power take-off system was simulated. Three groups of different movement period inputs were used to simulate three kinds of wave conditions, and the simulation results were obtained under three different working conditions. In addition, the prototype of " Sharp Eagle Ⅱ” wave energy converter was tested on land and in real sea conditions. The experimental data have been collected, and the experimental data and simulation results were compared and validated. This work has laid a foundation for the design and application of the following " Sharp Eagle” series of devices.
文摘By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on May 6 in 2010 in Loudi City of Hunan Province were analyzed.The results showed that MCS was the important influence system for the generation and development of strong precipitation.The equivalent blackbody brightness temperature(TBB) field of satellite inversion could directly reflect the convective activity of cumulus,the precipitation distribution and the intensity characteristics in the rainstorm process.TBB low value belt had the good corresponding relationship with the rainstorm falling zone.The disturbance flow field and the height field which passed Barnes band-pass wave filtering represented that there existed the obvious high-layer anticyclonic circulation and the low-layer cyclonic circulation near the rainstorm zone.The divergence in the high layer and the convergence in the low layer enhanced the occurrence and development of MCS.In addition,the disturbance temperature field revealed the main source of energy which the occurrence and development of strong convective weather needed.
基金Supported by National Natural Science Foundation of China(Grant No.51076014)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20101101110011)
文摘The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation.Linear model of the improved high pressure common-rail system(HPCRS)including injector,the pipe connecting common-rail with injector and the hydraulic filter is built.Fuel pressure fluctuation at injector inlet,on which frequency domain analysis is conducted through fast Fourier transformation,is acquired at different target pressure and different damping hole diameter experimentally.The linear model is validated and can predict the natural frequencies of the system.Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model,and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists.Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally,and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter.The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode,and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode.Fuel mass of a single injection increases with the increasing of the damping hole diameter.The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.