In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is...In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage.展开更多
Independence among leaf economics,leaf hydraulics and leaf size confers plants great capability in adapting to heterogeneous environments.However,it remains unclear whether the independence of the leaf traits revealed...Independence among leaf economics,leaf hydraulics and leaf size confers plants great capability in adapting to heterogeneous environments.However,it remains unclear whether the independence of the leaf traits revealed across species still holds within species,especially under stressed conditions.Here,a suite of traits in these dimensions were measured in leaves and roots of a typical mangrove species,Ceriops tagal,which grows in habitats with a similar sunny and hot environment but different soil salinity in southern China.Compared with C.tagal under low soil salinity,C.tagal under high soil salinity had lower photosynthetic capacity,as indicated directly by a lower leaf nitrogen concentration and higher water use efficiency,and indirectly by a higher investment in defense function and thinner palisade tissue;had lower water transport capacity,as evidenced by thinner leaf minor veins and thinner root vessels;and also had much smaller single leaf area.Leaf economics,hydraulics and leaf size of the mangrove species appear to be coordinated as one trait dimension,which likely stemmed from covariation of soil water and nutrient availability along the salinity gradient.The intraspecific leaf trait relationship under a stressful environment is insightful for our understanding of plant adaption to the multifarious environments.展开更多
电磁法在评估压裂液范围及裂缝形态时发挥着重要作用,在压裂监测中应用前景广泛。然而,对于川南地区的大深度页岩气水力压裂监测应用较少。为此,本文基于电磁监测理论,通过简化压裂模型进行数值模拟实验,在建立电磁监测技术的数据处理...电磁法在评估压裂液范围及裂缝形态时发挥着重要作用,在压裂监测中应用前景广泛。然而,对于川南地区的大深度页岩气水力压裂监测应用较少。为此,本文基于电磁监测理论,通过简化压裂模型进行数值模拟实验,在建立电磁监测技术的数据处理流程基础上,结合现场试验,从压裂液波及范围、用液强度、加砂强度、重复改造面积等多方面分析了压裂监测效果,进一步分析了电磁法进行水力压裂裂缝监测的有效性。其中,压裂监测段共计13段,获得各段波及面积4700~24042 m 2,波及宽度36~182 m,平均波及长度207 m。应用实例表明,电磁监测技术能实时了解压裂波及范围与展布形态,对压裂效果评价与施工参数的优化具有一定程度的指导意义。展开更多
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFC1804301)the National Science Fourdation of China(Grant No.42272279,41902244)partial support from a Discovery Grant awarded by the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage.
基金This study was funded by the National Natural Science Foundation of China(32171746,31870522 and 31670550)Special Foundation for National Science and Technology Basic Research Program of China(2019FY101300)the Scientific Research Foundation of Henan Agricultural University(30500854).
文摘Independence among leaf economics,leaf hydraulics and leaf size confers plants great capability in adapting to heterogeneous environments.However,it remains unclear whether the independence of the leaf traits revealed across species still holds within species,especially under stressed conditions.Here,a suite of traits in these dimensions were measured in leaves and roots of a typical mangrove species,Ceriops tagal,which grows in habitats with a similar sunny and hot environment but different soil salinity in southern China.Compared with C.tagal under low soil salinity,C.tagal under high soil salinity had lower photosynthetic capacity,as indicated directly by a lower leaf nitrogen concentration and higher water use efficiency,and indirectly by a higher investment in defense function and thinner palisade tissue;had lower water transport capacity,as evidenced by thinner leaf minor veins and thinner root vessels;and also had much smaller single leaf area.Leaf economics,hydraulics and leaf size of the mangrove species appear to be coordinated as one trait dimension,which likely stemmed from covariation of soil water and nutrient availability along the salinity gradient.The intraspecific leaf trait relationship under a stressful environment is insightful for our understanding of plant adaption to the multifarious environments.
文摘电磁法在评估压裂液范围及裂缝形态时发挥着重要作用,在压裂监测中应用前景广泛。然而,对于川南地区的大深度页岩气水力压裂监测应用较少。为此,本文基于电磁监测理论,通过简化压裂模型进行数值模拟实验,在建立电磁监测技术的数据处理流程基础上,结合现场试验,从压裂液波及范围、用液强度、加砂强度、重复改造面积等多方面分析了压裂监测效果,进一步分析了电磁法进行水力压裂裂缝监测的有效性。其中,压裂监测段共计13段,获得各段波及面积4700~24042 m 2,波及宽度36~182 m,平均波及长度207 m。应用实例表明,电磁监测技术能实时了解压裂波及范围与展布形态,对压裂效果评价与施工参数的优化具有一定程度的指导意义。