Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3...Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene hybrid composed of S-scheme junction integrated Schottky-junction was fabricated using a simple hydrothermal approach.All the components(g-C_(3)N_(4),ZnIn_(2)S_(4) and Ti_(3)C_(2) MXene)demonstrated two-dimensional(2D)nanosheets structure,leading to the formation of a 2D/2D/2D sandwich-like structure with intimate large interface for carrier migration.Furthermore,the photogenerated carriers on the g-C_(3)N_(4) possessed dual transfer channels,including one route in S-scheme transfer mode between the g-C_(3)N_(4) and ZnIn_(2)S_(4) and the other route in Schottky-junction between g-C_(3)N_(4) and Ti_(3)C_(2) MXene.Consequently,a highly efficient carrier separation and transport was realized in the ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene heterojunction.This ternary sample exhibited wide light response from 200 to 1400 nm and excellent photocatalytic H_(2) evolution of 2452.1μmol∙g^(–1)∙h^(–1),which was 200,3,1.5 and 1.6 times of g-C_(3)N_(4),ZnIn_(2)S_(4),ZnIn_(2)S_(4)/Ti_(3)C_(2) MXene and g-C_(3)N_(4)/ZnIn_(2)S_(4) binary composites.This work offers a paradigm for the rational construction of multi-electron pathways to regulate the charge separation and migration via the introduction of dual-junctions in catalytic system.展开更多
Metal-free catalyst for photocatalytic production of H_(2)O_(2)is highly desirable with the long-term vision of artificial photosynthesis of solar fuel.In particular,the specific chemical bonds for selective H_(2)O_(2...Metal-free catalyst for photocatalytic production of H_(2)O_(2)is highly desirable with the long-term vision of artificial photosynthesis of solar fuel.In particular,the specific chemical bonds for selective H_(2)O_(2)photosynthesis via 2e–oxygen reduction reactions(ORR)remain to be explored for understanding the forming mechanism of active sites.Herein,we report a facile doping method to introduce boron-nitrogen(B–N)bonds into the structure of graphitic carbon nitride(g-C_(3)N_(4))nanosheets(denoted as BCNNS)to provide significant photocatalytic activity,selectivity and stability.The theoretical calculation and experimental results reveal that the electron-deficient B–N units serving as electron acceptors improve photogenerated charge separation and transfer.The units are also proved to be superior active sites for selective O_(2)adsorption and activation,reducing the energy barrier for*OOH formation,and thereby enabling an efficient 2e–ORR pathway to H_(2)O_(2).Consequently,with only bare loss of activity during repeated cycles,the optimal H2O2 production rate by BCNNS photocatalysts reaches 1.16 mmol·L^(–1)·h^(–1)under 365 nm-monochrome light emitting diode(LED365nm)irradiation,increasing nearly 2–5 times as against the state-of-art metal-free photocatalysts.This work gives the first example of applying B–N bonds to enhance the photocatalytic H_(2)O_(2)production as well as unveiling the underlying reaction pathway for efficient solar-energy transformations.展开更多
Developing efficient and highly selective catalyst to promote hydrogen generation from hydrous hydrazine(N_(2)H_(4)·H_(2)O) and hydrazine borane(N_(2)H_(4)BH_(3))remains a challenging issue for fuel cell-based hy...Developing efficient and highly selective catalyst to promote hydrogen generation from hydrous hydrazine(N_(2)H_(4)·H_(2)O) and hydrazine borane(N_(2)H_(4)BH_(3))remains a challenging issue for fuel cell-based hydrogen economy.In this work,ultrafine and well-dispersed bimetallic NiPt nanoparticles(3.4 nm) were successfully immobilized on Y_(2)O_(3)-functionalized graphene(Y_(2)O_(3)/rGO) without any surfactant by a simple liquid impregnation approach.It is firstly found that integration of graphene and Y_(2)O_(3) not only can facilitate the formation of ultrafine NiPt nanoparticles(NPs),but also can effectively modulate the electronic structure of NiPt NPs,thereby boosting the catalytic performance.Compared with NiPt/Y_(2)O_(3) and NiPt/rGO,the NiPt/Y_(2)O_(3)/rGO nanocomposites(NCs) show remarkable enhanced catalytic efficiency for hydrogen production from N_(2)H_(4)-H_(2)O.In particular,the optimized Ni_(0.6)Pt_(0.4/)Y_(2)O_(3)/rGO NCs display the best catalytic efficiency and 100% H_(2) selectivity for N_(2)H_(4)-H_(2)O dehydrogenation,providing a turnover frequency(TOF) of2182 h^(-1) at 323 K,which is among the highest values ever reported.Moreover,the Ni_(0.6)Pt_(0.4)/Y_(2)O_(3)/rGO NCs also exhibit an excellent catalytic performance(TOF=3191 h^(-1)) and 100% H_(2) selectively for N_(2)H_(4)BH_(3)dehydrogenation at 323 K.The outstanding catalytic results obtained provide more possibilities for the potential applications of N_(2)H_(4)·H_(2)O and N_(2)H_(4)BH_(3) as promising chemical hydrogen storage materials.展开更多
The random mobility of charge carriers is a main factor causing the low photocatalytic efficiency of gCN.Thus,the controllable migration of charge carriers is a rational strategy to suppress the charge recombination a...The random mobility of charge carriers is a main factor causing the low photocatalytic efficiency of gCN.Thus,the controllable migration of charge carriers is a rational strategy to suppress the charge recombination and facilitate charge separation.Herein,an ethylenediamine modified g-C_(3)N_(4)displays improved photocatalytic activity.The excellent charge separation efficiency is confirmed to be a key factor for the enhancement.The TEM observation after photo-depositing Pt nanoparticles and DFT calculations verify the accumulation of electrons on some areas of g-C_(3)N_(4)surface.The increased-NH_(2)groups significantly tune the electronic structure of g-C_(3)N_(4)after the modification.The generation of midgap states also affects the charge separation.Our reports provide a simple method to manage the migration of charge carriers and enable electrons directional transfer,which suppresses the recombination and improves the photocatalytic activity.展开更多
文摘Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene hybrid composed of S-scheme junction integrated Schottky-junction was fabricated using a simple hydrothermal approach.All the components(g-C_(3)N_(4),ZnIn_(2)S_(4) and Ti_(3)C_(2) MXene)demonstrated two-dimensional(2D)nanosheets structure,leading to the formation of a 2D/2D/2D sandwich-like structure with intimate large interface for carrier migration.Furthermore,the photogenerated carriers on the g-C_(3)N_(4) possessed dual transfer channels,including one route in S-scheme transfer mode between the g-C_(3)N_(4) and ZnIn_(2)S_(4) and the other route in Schottky-junction between g-C_(3)N_(4) and Ti_(3)C_(2) MXene.Consequently,a highly efficient carrier separation and transport was realized in the ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene heterojunction.This ternary sample exhibited wide light response from 200 to 1400 nm and excellent photocatalytic H_(2) evolution of 2452.1μmol∙g^(–1)∙h^(–1),which was 200,3,1.5 and 1.6 times of g-C_(3)N_(4),ZnIn_(2)S_(4),ZnIn_(2)S_(4)/Ti_(3)C_(2) MXene and g-C_(3)N_(4)/ZnIn_(2)S_(4) binary composites.This work offers a paradigm for the rational construction of multi-electron pathways to regulate the charge separation and migration via the introduction of dual-junctions in catalytic system.
基金supported by the Jiangsu Provincial Double-Innovation Doctor Program(JSSCBS20210996).
文摘Metal-free catalyst for photocatalytic production of H_(2)O_(2)is highly desirable with the long-term vision of artificial photosynthesis of solar fuel.In particular,the specific chemical bonds for selective H_(2)O_(2)photosynthesis via 2e–oxygen reduction reactions(ORR)remain to be explored for understanding the forming mechanism of active sites.Herein,we report a facile doping method to introduce boron-nitrogen(B–N)bonds into the structure of graphitic carbon nitride(g-C_(3)N_(4))nanosheets(denoted as BCNNS)to provide significant photocatalytic activity,selectivity and stability.The theoretical calculation and experimental results reveal that the electron-deficient B–N units serving as electron acceptors improve photogenerated charge separation and transfer.The units are also proved to be superior active sites for selective O_(2)adsorption and activation,reducing the energy barrier for*OOH formation,and thereby enabling an efficient 2e–ORR pathway to H_(2)O_(2).Consequently,with only bare loss of activity during repeated cycles,the optimal H2O2 production rate by BCNNS photocatalysts reaches 1.16 mmol·L^(–1)·h^(–1)under 365 nm-monochrome light emitting diode(LED365nm)irradiation,increasing nearly 2–5 times as against the state-of-art metal-free photocatalysts.This work gives the first example of applying B–N bonds to enhance the photocatalytic H_(2)O_(2)production as well as unveiling the underlying reaction pathway for efficient solar-energy transformations.
基金financially supported by the National Natural Science Foundation of China (Nos. 22162013 and 22162014)Natural Science Foundation of Jiangxi Province (No. 20212ACB204009)+2 种基金the Program of the Academic and Technical Leaders of Major Disciplines of Jiangxi Province (No. 20212BCJL23059)the Thousand Talents Plan of Jiangxi Provincethe Open Project Program of State-Province Joint Engineering Laboratory of Zeolite Membrane Materials of China (No. SPJELZMM-202210)。
文摘Developing efficient and highly selective catalyst to promote hydrogen generation from hydrous hydrazine(N_(2)H_(4)·H_(2)O) and hydrazine borane(N_(2)H_(4)BH_(3))remains a challenging issue for fuel cell-based hydrogen economy.In this work,ultrafine and well-dispersed bimetallic NiPt nanoparticles(3.4 nm) were successfully immobilized on Y_(2)O_(3)-functionalized graphene(Y_(2)O_(3)/rGO) without any surfactant by a simple liquid impregnation approach.It is firstly found that integration of graphene and Y_(2)O_(3) not only can facilitate the formation of ultrafine NiPt nanoparticles(NPs),but also can effectively modulate the electronic structure of NiPt NPs,thereby boosting the catalytic performance.Compared with NiPt/Y_(2)O_(3) and NiPt/rGO,the NiPt/Y_(2)O_(3)/rGO nanocomposites(NCs) show remarkable enhanced catalytic efficiency for hydrogen production from N_(2)H_(4)-H_(2)O.In particular,the optimized Ni_(0.6)Pt_(0.4/)Y_(2)O_(3)/rGO NCs display the best catalytic efficiency and 100% H_(2) selectivity for N_(2)H_(4)-H_(2)O dehydrogenation,providing a turnover frequency(TOF) of2182 h^(-1) at 323 K,which is among the highest values ever reported.Moreover,the Ni_(0.6)Pt_(0.4)/Y_(2)O_(3)/rGO NCs also exhibit an excellent catalytic performance(TOF=3191 h^(-1)) and 100% H_(2) selectively for N_(2)H_(4)BH_(3)dehydrogenation at 323 K.The outstanding catalytic results obtained provide more possibilities for the potential applications of N_(2)H_(4)·H_(2)O and N_(2)H_(4)BH_(3) as promising chemical hydrogen storage materials.
基金supported by Shenzhen Key Laboratory of Solid State Batteries(ZDSYS20180208184346531)Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(2018B030322001)+3 种基金Guangdong Provincial Key Laboratory of Catalysis(2020B121201002)Shenzhen Clean Energy Research Institute(CERI-KY-2019-003)the National Natural Science Foundation of China(2017M611446)supported by the Core Research Facilities at SUSTech that receives support from a Presidential fund and the Development and Reform Commission of Shenzhen Municipality。
文摘The random mobility of charge carriers is a main factor causing the low photocatalytic efficiency of gCN.Thus,the controllable migration of charge carriers is a rational strategy to suppress the charge recombination and facilitate charge separation.Herein,an ethylenediamine modified g-C_(3)N_(4)displays improved photocatalytic activity.The excellent charge separation efficiency is confirmed to be a key factor for the enhancement.The TEM observation after photo-depositing Pt nanoparticles and DFT calculations verify the accumulation of electrons on some areas of g-C_(3)N_(4)surface.The increased-NH_(2)groups significantly tune the electronic structure of g-C_(3)N_(4)after the modification.The generation of midgap states also affects the charge separation.Our reports provide a simple method to manage the migration of charge carriers and enable electrons directional transfer,which suppresses the recombination and improves the photocatalytic activity.