期刊文献+
共找到3,976篇文章
< 1 2 199 >
每页显示 20 50 100
Hydriding/dehydriding properties of Mg-Ni-based ternary alloys synthesized by mechanical grinding 被引量:1
1
作者 陈玉安 杨丽玲 +2 位作者 林嘉靖 程绩 潘复生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期624-629,共6页
The Mg-Ni-based ternary alloys Mg2-xTixNi(x=0,0.2,0.4)and Mg2Ni1-xZrx(x=0,0.2,0.4)were successfully synthesized by mechanical grinding.The phases in the alloys and the hydriding/dehydriding properties of the alloys we... The Mg-Ni-based ternary alloys Mg2-xTixNi(x=0,0.2,0.4)and Mg2Ni1-xZrx(x=0,0.2,0.4)were successfully synthesized by mechanical grinding.The phases in the alloys and the hydriding/dehydriding properties of the alloys were investigated.Mg2Ni and Mg are the main hydrogen absorption phases in the alloys by XRD analysis.Hydriding kinetics curves of the alloys indicate that the hydrogen absorption rate increases after partial substitution of Ti for Mg and Zr for Ni.According to the measurement of pressure-concentration-isotherms and Van't Hoff equation,the relationship between ln p(H2)and 1 000/T was established.It is found that while increasing the content of correspondingly substituted elements at the same temperature,the equilibrium pressure of dehydriding increases,the enthalpy change and the stability of the alloy hydride decrease. 展开更多
关键词 Mg-Ni-based hydrogen storage alloy mechanical grinding p-C-T measurement hydriding properties enthalpy change
下载PDF
Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials 被引量:20
2
作者 Qian Li Yangfan Lu +10 位作者 Qun Luo Xiaohua Yang Yan Yang Jun Tan Zhihua Dong Jie Dang Jianbo Li Yuan Chen Bin Jiang Shuhui Sun Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1922-1941,共20页
Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamic... Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects. 展开更多
关键词 Magnesium-based hydrogen storage materials hydriding/dehydriding reactions THERMODYNAMICS Kinetic models Analysis methods
下载PDF
Hydriding/dehydriding properties of NdMgNi alloy with catalyst CeO_2 被引量:1
3
作者 李霞 张羊换 +2 位作者 杨泰 许剑轶 赵栋梁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第4期407-412,共6页
Hydrogen storage composites Nd2Mg17-50 wt.%Ni-x wt.%CeO2(x=0, 0.5, 1.0, 1.5, 2.0) were obtained by induction-ball milling method. The catalytic effect of CeO_2 on hydriding kinetics of Nd_2Mg17-50 wt.%Ni composite w... Hydrogen storage composites Nd2Mg17-50 wt.%Ni-x wt.%CeO2(x=0, 0.5, 1.0, 1.5, 2.0) were obtained by induction-ball milling method. The catalytic effect of CeO_2 on hydriding kinetics of Nd_2Mg17-50 wt.%Ni composite was investigated. X-ray diffraction(XRD) and high resolution transmission electron microscopy(HRTEM), selected area electron diffraction(SAED) analyses showed that Nd_2Mg17-50 wt.%Ni alloy had a multiphase structure, consisting of NdMg12, NdMg_2Ni, Mg_2Ni and Ni phases and the addition of catalyst CeO_2 prompted the composites to be partly transformed into amorphous strucutre. The CeO_2 improved the maximum hydrogen capacity of Nd_2Mg17-50 wt.%Ni alloy from 3.192 wt.% to 3.376 wt.%(x=1.0). What's more, the increment of diffusion coefficient D led to the faster hydriding kinetics, which was calculated by Avrami-Erofeev equation. The dehydrogenation temperature reduced from 515.54 to 504.72 K was mainly caused by the decrease of activation energy from 93.28 to 69.36 kJ /mol, which was proved by the Kissinger equation. 展开更多
关键词 Nd-Mg-Ni alloy ball milling hydriding/dehydriding catalysis rare earths
原文传递
Influence of substituting Ni with Co on hydriding and dehydriding kinetics of melt spun nanocrystalline and amorphous Mg_2Ni-type alloys 被引量:2
4
作者 张羊换 赵栋梁 +3 位作者 李保卫 马志鸿 郭世海 王新林 《Journal of Central South University》 SCIE EI CAS 2011年第2期303-309,共7页
In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys w... In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were studied with an X-ray diffractometer (XRD) and a high resolution transmission electronic microscope (HRTEM). An investigation on the thermal stability of the as-spun alloys was carried out with a differential scanning calorimeter (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results demonstrate that the substitution of Co for Ni does not alter the major phase of Mg2Ni but results in the formation of secondary phase MgCo2. No amorphous phase is detected in the as-spun Co-free alloy,but a certain amount of amorphous phase is clearly found in the as-spun Co-containing alloys. The substitution of Co for Ni exerts a slight influence on the hydriding kinetics of the as-spun alloy. However,it dramatically enhances the dehydriding kinetics of the as-cast and spun alloys. As Co content (x) increases from 0 to 0.4,the hydrogen desorption capacity increases from 0.19% to 1.39% (mass fraction) in 20 min for the as-cast alloy,and from 0.89% to 2.18% (mass fraction) for the as-spun alloy (30 m/s). 展开更多
关键词 Mg2Ni-type alloy MELT-SPINNING substituting NI Co structure hydriding dehydriding KINETICS
下载PDF
Hydriding and dehydriding kinetics of nanocrystalline and amorphous Mg_2Ni_(1-x)Mn_x(x=0-0.4) alloys prepared by melt spinning 被引量:2
5
作者 张羊换 祁焱 +3 位作者 任慧平 马志鸿 郭世海 赵栋梁 《Journal of Central South University》 SCIE EI CAS 2011年第4期985-992,共8页
A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous MgzNi-type Mg2Nil-xMnx (x=0, 0. 1, 0.2, 0.3, ... A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous MgzNi-type Mg2Nil-xMnx (x=0, 0. 1, 0.2, 0.3, 0.4) alloys were synthesized by the melt-spinning technique. The structures of the as-cast and spun alloys were studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results show that the as-spun Mn-free alloy holds a typical nanocrystalline structure, whereas the as-spun alloys containing Mn display a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni intensifies the glass forming ability of the Mg2Ni-type alloy. The hydrogen absorption and desorption capacities and kinetics of the alloys increase with increasing the spinning rate, for which the nanocrystalline and amorphous structure produced by the melt spinning is mainly responsible. The substitution of Mn for Ni evidently improves the hydrogen desorption performance. The hydrogen desorption capacities of the as-cast and spun alloys rise with the increase in the percentage of Mn substitution. 展开更多
关键词 Mg2Ni-type alloy MELT-SPINNING structure hydriding kinetics dehydriding kinetics
下载PDF
Hydriding and dehydriding characteristics of nanocrystalline and amorphous Mg_(20-x)La_xNi_(10)(x=0-6) alloys prepared by melt-spinning 被引量:1
6
作者 张羊换 赵栋梁 +3 位作者 任慧平 郭世海 王青春 王新林 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期514-519,共6页
In order to improve the hydrogenation and dehydrogenation performances of the Mg2Ni-type alloys, Mg was partially substituted by La in the alloy, and melt spinning technology was used for the preparation of the Mg20-x... In order to improve the hydrogenation and dehydrogenation performances of the Mg2Ni-type alloys, Mg was partially substituted by La in the alloy, and melt spinning technology was used for the preparation of the Mg20-xLaxNi10 (x=0, 2, 4, 6) hydrogen storage alloys. The structures of the alloys were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). It was found that no amorphous phase formed in the as-spun La-free alloy, but the as-spun alloys containing La held a major amorphous phase. When La content x≤2, the major phase in the as-cast alloys was Mg2Ni phase, but with further increase of La content, the major phase of the as-cast alloys changed into LaNi5+LaMg3 phase. Thermal stability of the as-spun alloys was studied by differential scanning calorimetry (DSC), showing that spinning rate was a negligible factor on the crystallization temperature of the amorphous phase. The hydrogen absorption and desorption kinetics of the as-cast and as-spun alloys were measured using an automatically controlled Sieverts apparatus, confirming that the hydrogen absorption and desorption capacities and kinetics of the as-cast alloys clearly increased with rising La content. For La content x=2, the as-spun alloy displayed optimal hydrogen desorption kinetics at 200 ℃. 展开更多
关键词 Mg2Ni-type hydrogen storage alloy MELT-SPINNING structure hydriding and dehydriding characteristics rare earths
下载PDF
Nanocrystalline Mg and Mg alloy powders by hydriding-dehydriding processing 被引量:4
7
作者 王辛 王珩 +1 位作者 胡连喜 王尔德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第7期1326-1330,共5页
The process of mechanically assisted hydriding and subsequent thermal dehydriding was proposed to produce nanocrystalline Mg and Mg alloy powders using pure Mg and Mg-5.5%Zn-0.6%Zr(mass fraction)(ZK60 Mg) alloy as the... The process of mechanically assisted hydriding and subsequent thermal dehydriding was proposed to produce nanocrystalline Mg and Mg alloy powders using pure Mg and Mg-5.5%Zn-0.6%Zr(mass fraction)(ZK60 Mg) alloy as the starting materal.The hydriding was achieved by room-temperature reaction milling in hydrogen.The dehydriding was carried out by vacuum annealing of the as-milled powders.The microstructure and morphology of both the as-milled and subsequently dehydrided powders were characterized by X-ray diffraction analysis(XRD) ,transmission electron microscopy(TEM) ,and scanning electron microscopy(SEM) ,respectively.The results show that,by reaction milling in hydrogen,both Mg and ZK60 Mg alloy can be fully hydrided to form nanocrystalline MgH2 with an average grain size of 10 nm.After subsequent thermal dehydriding at 300℃,the MgH2 can be turned into Mg again,and the newly formed Mg grains are nanocrystallines,with an average grain size of 25 nm. 展开更多
关键词 Mg Mg alloy hydriding dehydriching hydrogen treatment NANOCRYSTALLINE
下载PDF
Electrochemical hydriding and thermal dehydriding properties of nanostructured hydrogen storage MgNi26 alloy 被引量:2
8
作者 V.KNOTEK O.EKRT +1 位作者 M.LHOTKA D.VOJTěCH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2136-2143,共8页
The MgNi26 alloy was prepared by three different methods of gravity casting (GC), mechanical alloying (MA) and rapid solidification (RS). All samples were electrochemically hydrided in a 6 mol/L KOH solution at 80 ... The MgNi26 alloy was prepared by three different methods of gravity casting (GC), mechanical alloying (MA) and rapid solidification (RS). All samples were electrochemically hydrided in a 6 mol/L KOH solution at 80 °C for 240 min. The structures and phase compositions of the alloys were studied using optical microscopy and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. A temperature-programmed desorption technique was used to measure the absorbed hydrogen and study the dehydriding process. The content of hydrogen absorbed by the MgNi26-MA (approximately 1.3%, mass fraction) was 30 times higher than that of the MgNi26-GC. The MgNi26-RS sample absorbed only 0.1% of hydrogen. The lowest temperature for hydrogen evolution was exhibited by the MgNi26-MA. Compared with pure commercial MgH2, the decomposition temperature was reduced by more than 200 °C. The favourable phase and structural composition of the MgNi26-MA sample were the reasons for the best hydriding and dehydriding properties. 展开更多
关键词 magnesium alloy hydrogen storage electrochemical hydriding mechanical alloying melt spinning
下载PDF
Hydriding and dehydriding kinetics of melt spun nanocrystalline Mg20Ni10-xCux (x = 0-4) alloys
9
作者 Yang-Huan Zhang Dong-Liang Zhao +3 位作者 Bao-Wei Li Hui-Ping Ren Shi-Hai Guo Xin-Lin Wang 《Natural Science》 2010年第1期18-25,共8页
The nanocrystalline Mg2Ni-type electrode alloys with nominal compositions of Mg20Ni10-xCux (x = 0, 1, 2, 3, 4) were synthesized by melt-spinning technique. The microstructures of the alloys were characterized by XRD, ... The nanocrystalline Mg2Ni-type electrode alloys with nominal compositions of Mg20Ni10-xCux (x = 0, 1, 2, 3, 4) were synthesized by melt-spinning technique. The microstructures of the alloys were characterized by XRD, SEM and HRTEM. The hydrogen absorption and desorption kinet-ics of the alloys were measured using an auto-matically controlled Sieverts apparatus. The re- sults show that all the as-spun alloys hold ty- pical nanocrystalline structure. The substitution of Cu for Ni does not change the major phase Mg2Ni but it leads to the formation of the sec-ondary phase Mg2Cu. The hydrogen absorption capacity of the alloys first increases and then decreases with rising Cu content, but the hy-drogen desorption capacity of the alloys mono- tonously grows with increasing Cu content. The melt spinning significantly improves the hydro- genation and dehydrogenation capacities and kinetics of the alloys. 展开更多
关键词 Mg2Ni-Type Alloy Substituting Ni with Cu MELT SPINNING hydriding and dehydriding
下载PDF
Hydriding-dehydriding properties of Mg_2Ni alloy modified by ball-milling in tetrahydrofuran
10
作者 CHEN Changpin WANG Wei +2 位作者 CHEN Yun CHEN Lixin WANG Qidong Department of Materials Science and Engineering, Zhejiang University Hangzhou 310027, China 《Rare Metals》 SCIE EI CAS CSCD 2004年第2期138-142,共5页
A new approach of ball-milled Mg_2Ni in tetrahydrofuran (THF) to improve thehydriding kinetics of Mg_2Ni alloy is suggested and studied. It is found that the modified alloydisplayed the improved activity for hydriding... A new approach of ball-milled Mg_2Ni in tetrahydrofuran (THF) to improve thehydriding kinetics of Mg_2Ni alloy is suggested and studied. It is found that the modified alloydisplayed the improved activity for hydriding even at relatively low temperature (e.g., 323-373 K).In the case of the sample milled in THF for 20 h, the hydrogen content (mass fraction) reaches 1.6 %at 323 K, 2.1% at 348 K and 3.4% at 448 K, respectively. The use of THF during grinding led to thechange of the structure, which is reflected by the broadening and weakening of the diffraction peaksin the XRD spectra. The XPS analysis shows that Mg (2s) binding energy peak of Mg_2Ni aftermodification shifted from a lower binding energy to a higher one, indicating the charge transferencebetween Mg and THF and the formation of catalytically active electron donor-acceptor (EDA)complexes on the surface of modified Mg_2Ni alloy. 展开更多
关键词 metal materials Mg_2Ni alloy ball-milling TETRAHYDROFURAN hydriding-dehydriding property
下载PDF
In-situ X-ray diffraction study on MlNi_(3.75)Co_(0.75)Mn_(0.3)Al_(0.2) during electrochemical hydriding-dehydriding process 被引量:1
11
作者 袁志庆 吕光烈 +2 位作者 顾建明 屠小燕 王新喜 《中国有色金属学会会刊:英文版》 CSCD 2004年第2期232-236,共5页
Phase transformations and lattice expansions of MlNi_)3.75)Co_)0.75)Mn_)0.3)Al_)0.2) during the electrochemical hydriding-dehydriding process were investigated using in-situ X-ray diffraction. An intermediate hydride ... Phase transformations and lattice expansions of MlNi_)3.75)Co_)0.75)Mn_)0.3)Al_)0.2) during the electrochemical hydriding-dehydriding process were investigated using in-situ X-ray diffraction. An intermediate hydride γ phase between the hydrogen solid solution α phase and fully hydrided β phase can be observed during the cycling. The formation of γ phase is related to the diffusion of hydrogen in the crystal grains. The lower the charge rate is, the higher the content of γ phase is. The phase transformations during the hydriding-dehydriding process can be described as )αα+γ+ββγ+αα.) The lattice expansion from α to β is discrete, while that from γ to β is continuous. The formation of γ phase can reduce the discrete lattice expansion from α to β by 30%. 展开更多
关键词 NI-MH电池 AB5型储氢合金 相变 金属间化合物 NICOMNAL XRD
下载PDF
Microstructure of alloy MlNi_(3.75)Co_(0.75)Mn_(0.3)Al_(0.2) (Ml—La-rich mischmetal) during electrochemical hydriding-dehydriding process
12
作者 袁志庆 吕光烈 +1 位作者 顾建明 盛小飞 《中国有色金属学会会刊:英文版》 SCIE EI CAS CSCD 2005年第1期93-96,共4页
Evolution of microstructures of alloy MlNi3.75Co0.75Mn0.3Al0.2 (Ml—La-rich mischmetal) during the electrochemical hydriding-dehydriding process was studied by using in-situ X-ray diffraction method. It is indicated... Evolution of microstructures of alloy MlNi3.75Co0.75Mn0.3Al0.2 (Ml—La-rich mischmetal) during the electrochemical hydriding-dehydriding process was studied by using in-situ X-ray diffraction method. It is indicated that both the crystallite sizes of α phase (solid solution phase) and β phase (hydride phase) decrease with the hydrogen content increasing during this process. β phase is found to be composed of the plate-like and the needle-like crystallites, while the crystallite size of the former changes more rapidly than that of the later during the (hydriding-)(dehydriding) process. It’s also clearly found that strains along (110) plane and (001) plane of α phase and β phase are higher in the α+β region than those in the corresponding single phase region. Based on the microstructural studies, mechanism for the hydride growth has also been proposed. 展开更多
关键词 结晶尺寸 储氢合金 氢化物 X-光衍射 微观结构 锰铝合金
下载PDF
Deflagration characteristics of freely propagating flames in magnesium hydride dust clouds 被引量:1
13
作者 Qiwei Zhang Yangfan Cheng +2 位作者 Beibei Zhang Danyi Li Zhaowu Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期471-483,共13页
The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the... The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the two-color pyrometer technique,and the chemical composition of solid combustion residues were analyzed.The experimental results showed that the average flame propagation velocities of 23μm,40μm,60μm and 103μm MgH_(2)dust clouds in the stable propagation stage were 3.7 m/s,2.8 m/s,2.1 m/s and 0.9 m/s,respectively.The dust clouds with smaller particle sizes had faster flame propagation velocity and stronger oscillation intensity,and their flame temperature distributions were more even and the temperature gradients were smaller.The flame structures of MgH_(2)dust clouds were significantly affected by the particle sinking velocity,and the combustion processes were accompanied by micro-explosion of particles.The falling velocities of 23μm and 40μm MgH_(2)particles were 2.24 cm/s and 6.71 cm/s,respectively.While the falling velocities of 60μm and 103μm MgH_(2)particles were as high as 15.07 cm/s and 44.42 cm/s,respectively,leading to a more rapid downward development and irregular shape of the flame.Furthermore,the dehydrogenation reaction had a significant effect on the combustion performance of MgH_(2)dust.The combustion of H_(2)enhanced the ignition and combustion characteristics of MgH_(2)dust,resulting in a much higher explosion power than the pure Mg dust.The micro-structure characteristics and combustion residues composition analysis of MgH_(2)dust indicated that the combustion control mechanism of MgH_(2)dust flame was mainly the heterogeneous reaction,which was affected by the dehydrogenation reaction. 展开更多
关键词 Magnesium hydride dust Flame combustion mechanism Particle size Dust explosion Two-color pyrometer
下载PDF
Recent progress in thermodynamic and kinetics modification of magnesium hydride hydrogen storage materials 被引量:1
14
作者 Yafei Liu Yusang Guo +3 位作者 Yaru Jiang Lizhuang Feng Yu Sun Yijing Wang 《Materials Reports(Energy)》 EI 2024年第1期3-22,共20页
Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen... Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials. 展开更多
关键词 Magnesium hydride Thermodynamics and kinetics Catalyst doping NANOSTRUCTURES Hydrogenation and dehydrogenation
下载PDF
Unveiling a novel metal-to-metal transition in LuH_(2):Critically challenging superconductivity claims in lutetium hydrides
15
作者 Dong Wang Ningning Wang +15 位作者 Caoshun Zhang Chunsheng Xia Weicheng Guo Xia Yin Kejun Bu Takeshi Nakagawa Jianbo Zhang Federico Gorelli Philip Dalladay-Simpson Thomas Meier Xujie Lü Liling Sun Jinguang Cheng Qiaoshi Zeng Yang Ding Ho-kwang Mao 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第3期65-73,共9页
Following the recent report by Dasenbrock-Gammon et al.[Nature 615,244–250(2023)]of near-ambient superconductivity in nitrogendoped lutetium trihydride(LuH_(3-δ)N_(ε)),significant debate has emerged surrounding the... Following the recent report by Dasenbrock-Gammon et al.[Nature 615,244–250(2023)]of near-ambient superconductivity in nitrogendoped lutetium trihydride(LuH_(3-δ)N_(ε)),significant debate has emerged surrounding the composition and interpretation of the observed sharp resistance drop.Here,we meticulously revisit these claims through comprehensive characterization and investigations.We definitively identify the reported material as lutetium dihydride(LuH_(2)),resolving the ambiguity surrounding its composition.Under similar conditions(270–295 K and 1–2 GPa),we replicate the reported sharp decrease in electrical resistance with a 30%success rate,aligning with the observations by Dasenbrock-Gammon et al.However,our extensive investigations reveal this phenomenon to be a novel pressure-induced metal-to-metal transition intrinsic to LuH_(2),distinct from superconductivity.Intriguingly,nitrogen doping exerts minimal impact on this transition.Our work not only elucidates the fundamental properties of LuH_(2)andLuH_(3),but also critically challenges the notion of superconductivity in these lutetium hydride systems.These findings pave the way for future research on lutetium hydride systems,while emphasizing the crucial importance of rigorous verification in claims of ambient-temperature superconductivity. 展开更多
关键词 RESISTANCE hydridE SUPERCONDUCTIVITY
下载PDF
Phase-field simulations of the effect of temperature and interface for zirconiumδ-hydrides
16
作者 陈子航 盛杰 +8 位作者 刘瑜 施小明 黄厚兵 许可 王越超 武帅 孙博 刘海风 宋海峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期701-710,共10页
Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we hav... Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we have developed a phasefield model based on the assumption of elastic behaviour within a specific temperature range(613 K-653 K).This model allows us to study the influence of temperature and interfacial effects on the morphology,stress,and average growth rate of zirconium hydride.The results suggest that changes in temperature and interfacial energy influence the length-to-thickness ratio and average growth rate of the hydride morphology.The ultimate determinant of hydride orientation is the loss of interfacial coherency,primarily induced by interfacial dislocation defects and quantifiable by the mismatch degree q.An escalation in interfacial coherency loss leads to a transition of hydride growth from horizontal to vertical,accompanied by the onset of redirection behaviour.Interestingly,redirection occurs at a critical mismatch level,denoted as qc,and remains unaffected by variations in temperature and interfacial energy.However,this redirection leads to an increase in the maximum stress,which may influence the direction of hydride crack propagation.This research highlights the importance of interfacial coherency and provides valuable insights into the morphology and growth kinetics of hydrides in zirconium alloys. 展开更多
关键词 zirconium hydride phase-field method temperature effect mismatch degree
下载PDF
Understanding the catalysis of chromium trioxide added magnesium hydride for hydrogen storage and Li ion battery applications
17
作者 D.Pukazhselvan IhsanÇaha +3 位作者 Catarina de Lemos Sergey M.Mikhalev Francis Leonard Deepak Duncan Paul Fagg 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1117-1130,共14页
This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) addi... This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) additive reduces the dehydrogenation activation energy of MgH_(2) by 68 kJ/mol and lowers the required dehydrogenation temperature by 80℃.CrO_(3) added MgH_(2) was also tested as an anode in an Li ion battery,and it is possible to deliver over 90%of the total theoretical capacity(2038 mAh/g).Evidence for improved reversibility in the battery reaction is found only after the incorporation of additives with MgH_(2).In depth characterization study by X-ray diffraction(XRD)technique provides convincing evidence that the CrO_(3) additive interacts with MgH_(2) and produces Cr/MgO byproducts.Gibbs free energy analyses confirm the thermodynamic feasibility of conversion from MgH_(2)/CrO_(3) to MgO/Cr,which is well supported by the identification of Cr(0)in the powder by X ray photoelectron spectroscopy(XPS)technique.Through high resolution transmission electron microscopy(HRTEM)and energy dispersive spectroscopy(EDS)we found evidence for the presence of 5 nm size Cr nanocrystals on the surface of MgO rock salt nanoparticles.There is also convincing ground to consider that MgO rock salt accommodates Cr in the lattice.These observations support the argument that creation of active metal–metal dissolved rock salt oxide interface may be vital for improving the reactivity of MgH_(2),both for the improved storage of hydrogen and lithium. 展开更多
关键词 Hydrogen storage Rechargeable batteries Binary hydrides Metal oxides Catalytic mechanism.
下载PDF
Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
18
作者 王玺 唐孟 +3 位作者 蒋明璇 陈阳春 刘智骁 邓辉球 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期456-465,共10页
Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of dis... Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of displacement is an important quantity of the number of radiation defects produced, which helps us to predict the evolution of radiation defects in ZrH_(2).Molecular dynamics(MD) and ab initio molecular dynamics(AIMD) are two main methods of calculating the threshold energy of displacement. The MD simulations with empirical potentials often cannot accurately depict the transitional states that lattice atoms must surpass to reach an interstitial state. Additionally, the AIMD method is unable to perform largescale calculation, which poses a computational challenge beyond the simulation range of density functional theory. Machine learning potentials are renowned for their high accuracy and efficiency, making them an increasingly preferred choice for molecular dynamics simulations. In this work, we develop an accurate potential energy model for the ZrH_(2) system by using the deep-potential(DP) method. The DP model has a high degree of agreement with first-principles calculations for the typical defect energy and mechanical properties of the ZrH_(2) system, including the basic bulk properties, formation energy of point defects, as well as diffusion behavior of hydrogen and zirconium. By integrating the DP model with Ziegler–Biersack–Littmark(ZBL) potential, we can predict the threshold energy of displacement of zirconium and hydrogen in ε-ZrH_(2). 展开更多
关键词 zirconium hydride deep learning potential radiation defects molecular dynamics threshold energy of displacement
下载PDF
Magnesium nickel hydride monocrystalline nanoparticles for reversible hydrogen storage
19
作者 Yingyan Zhao Yunfeng Zhu +4 位作者 Rui Shi Jiguang Zhang Yana Liu Jun Wang Liquan Li 《Materials Reports(Energy)》 EI 2024年第1期104-112,共9页
Although Mg-based hydrides are extensively considered as a prospective material for solid-state hydrogen storage and clean energy carriers,their high operating temperature and slow kinetics are the main challenges for... Although Mg-based hydrides are extensively considered as a prospective material for solid-state hydrogen storage and clean energy carriers,their high operating temperature and slow kinetics are the main challenges for practical application.Here,a Mg-Ni based hydride,Mg_(2)NiH_(4) nanoparticles(~100 nm),with dual modification strategies of nanosizing and alloying is successfully prepared via a gas-solid preparation process.It is demonstrated that Mg_(2)NiH_(4) nanoparticles form a unique chain-like structure by oriented stacking and exhibit impressive hydrogen storage performance:it starts to release H2 at~170℃ and completes below 230℃ with a saturated capacity of 3.32 wt%and desorbs 3.14 wt% H_(2) within 1800 s at 200℃.The systematic characterizations of Mg_(2)NiH_(4) nanoparticles at different states reveal the dehydrogenation behavior and demonstrate the excellent structural and hydrogen storage stabilities during the de/hydrogenated process.This research is believed to provide new insights for optimizing the kinetic performance of metal hydrides and novel perspectives for designing highly active and stable hydrogen storage alloys. 展开更多
关键词 Magnesium-based hydride Chemical vapor deposition NANOPARTICLES Hydrogen storage performance
下载PDF
Characteristics of Hydrogen Storage Alloy Mg_2Ni Produced by Hydriding Combustion Synthesis 被引量:4
20
作者 QianLI QinLI +3 位作者 LijunJIANG Kou-chihCHOU FengZHAN QiangZHENG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第2期209-212,共4页
A high activity and large capacity of hydrogen storage alloy Mg2Ni by hydriding combustion synthesis was investigated by means of pressure composition isotherms, X-ray diffraction and scanning electron microscopy. The... A high activity and large capacity of hydrogen storage alloy Mg2Ni by hydriding combustion synthesis was investigated by means of pressure composition isotherms, X-ray diffraction and scanning electron microscopy. The results showed that the maximum hydrogen absorption capacity of Mg2Ni is 3.25 mass fraction at 523 K, just after synthesis without any activation. The relationships between the equilibrium plateau pressure and the temperature for Mg2Ni were lgp (0.1 MPa)=-3026/T+5.814 (523 K≤T≤623 K) for hydriding and Igp (0.1 MPa)=-3613/T+6.715 (523 K≤T ≤623 K) for dehydriding. The kinetic equation is [-ln(1-a)]3/2 = kt and the apparent activation energy for the nucleation and growth-controlled hydrogen absorption and desorption were determined to be 64.3±2.31kJ/(mol.H2) and 59.9±2.99kJ/(mol.H2)respectively. 展开更多
关键词 hydriding combustion MG2NI Hydrogen storage property Apparent activation energy
下载PDF
上一页 1 2 199 下一页 到第
使用帮助 返回顶部