Inspired by the demand of improving the riding comfort and meeting the lightweight design of the vehicle, an inerter-based X-structure nonlinear energy sink(IXNES) is proposed and applied in the half-vehicle system to...Inspired by the demand of improving the riding comfort and meeting the lightweight design of the vehicle, an inerter-based X-structure nonlinear energy sink(IXNES) is proposed and applied in the half-vehicle system to enhance the dynamic performance. The X-structure is used as a mechanism to realize the nonlinear stiffness characteristic of the NES, which can realize the flexibility, adjustability, high efficiency, and easy operation of nonlinear stiffness, and is convenient to apply in the vehicle suspension, and the inerter is applied to replacing the mass of the NES based on the mass amplification characteristic. The dynamic model of the half-vehicle system coupled with the IX-NES is established with the Lagrange theory, and the harmonic balance method(HBM) and the pseudo-arc-length method(PALM) are used to obtain the dynamic response under road harmonic excitation. The corresponding dynamic performance under road harmonic and random excitation is evaluated by six performance indices, and compared with that of the original half-vehicle system to show the benefits of the IX-NES. Furthermore, the structural parameters of the IX-NES are optimized with the genetic algorithm. The results show that for road harmonic and random excitation, using the IX-NES can greatly reduce the resonance peaks and root mean square(RMS) values of the front and rear suspension deflections and the front and rear dynamic tire loads, while the resonance peaks and RMS values of the vehicle body vertical and pitching accelerations are slightly larger.When the structural parameters of the IX-NES are optimized, the vehicle body vertical and pitching accelerations of the half-vehicle system could reduce by 2.41% and 1.16%,respectively, and the other dynamic performance indices are within the reasonable ranges.Thus, the IX-NES combines the advantages of the inerter, X-structure, and NES, which improves the dynamic performance of the half-vehicle system and provides an effective option for vibration attenuation in the vehicle engineering.展开更多
In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in ...In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes.展开更多
A two-degree-of-freedom(2DOF)vibration isolation structure with an integrated geometric nonlinear inerter(NI)device is proposed.The device is integrated into an inertial nonlinear energy sink(INES),and its vibration s...A two-degree-of-freedom(2DOF)vibration isolation structure with an integrated geometric nonlinear inerter(NI)device is proposed.The device is integrated into an inertial nonlinear energy sink(INES),and its vibration suppression performance is examined by the Runge-Kutta(RK)method and verified by the harmonic balance method(HBM).The new isolator is compared with a traditional vibration isolator.The results show a significant improvement in the vibration suppression performance.To investigate the effects of the excitation amplitude and initial condition on the dynamics of the system,a series of transmissibility-frequency response analyses are performed based on the displacement transmissibility.The energy flow of the system is analyzed,and numerous calculations reveal a series of ideal values for the energy sink in the NI-INES system.This study provides new insights for the design of vibration isolators.展开更多
The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were sy...The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were systematically studied.First,the seismic responses of the base isolated structure with each control system under white noise excitation were obtained.Then,the structural parameter optimizations of the TVMD,TID and TMD were conducted by using three different objectives.The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses,including the base shear of the BIS,the absolute acceleration of structural SDOF,and the relative displacement between the base isolation floor and the foundation.Finally,considering the superstructure as a structural MDOF,a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations.The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases,and the effectiveness of TID was always better than TMD with the same mass ratio.The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD.Furthermore,the TVMD,when compared with TMD and TID,had better activation sensitivity and a smaller stroke.展开更多
When dealing with the oscillations of fixed-base structures or machines induced by external forces,suppressing the vibrational impact on the adjacent structures and the environment helps to maintain the structural dur...When dealing with the oscillations of fixed-base structures or machines induced by external forces,suppressing the vibrational impact on the adjacent structures and the environment helps to maintain the structural durability and ensure the users′comfort level.This study proposed an inerter-based optimal solution to suppress the vibrational forces and energy transmitted to the supporting ground by utilizing the great potential of the inerter.For the external force,which contains various frequency bands,the stochastic response and an energy balance analysis are conducted to evaluate the force transmissibility,structural displacement,and vibration power flow.Given the benefits of the inerter,a transmitted-force-based optimal design framework is proposed for inerter systems,of which the effectiveness is validated by numerical examples.The obtained results show that inerter systems are capable of providing significant reductions in the structural displacement and the force transmitted to the supporting ground.Particularly,the closed-form power equation indicated that a grounded inerter can suppress the force transmission and vibrational energy,thus leading to a less negative impact on the ground and environment.Revealing the working mechanism and optimal design strategy of the inerter can help solve the force-transmission control problem experienced by some practical structures.展开更多
The diagonal inerter is integrated into a suspension vibration reduction system(SVRS).The dynamic model of the SVRS with diagonal inerter and damping is established.The dynamic model is of strong geometric nonlinearit...The diagonal inerter is integrated into a suspension vibration reduction system(SVRS).The dynamic model of the SVRS with diagonal inerter and damping is established.The dynamic model is of strong geometric nonlinearity.The retaining nonlinearity up to cubic terms is validated under impact excitation.The conditions omitting the static deformation are determined.The effects of the diagonal inerter on the vibration reduction performance of the SVRS are explored under impact and random excitations.The vibration reduction performance of the proposed SVRS with both diagonal inerter and damping is better than that of either the SVRS without them or the SVRS with the diagonal damping only.展开更多
A novel implementation of negative stiffness elements(NSEs)is proposed,utilizing industrial grade nitrogen gas springs as pre-stressed stiffness elements in a configuration with lever arms.This NSE is combined with an...A novel implementation of negative stiffness elements(NSEs)is proposed,utilizing industrial grade nitrogen gas springs as pre-stressed stiffness elements in a configuration with lever arms.This NSE is combined with an inerter to form a stiff dynamic absorber(SDA)for vertical seismic protection of structures with base isolation.The SDA is optimized to minimize vertical accelerations while ensuring static structural integrity,excellent damping performance and containment of relative displacements.The introduction of gas springs in place of conventional linear springs addresses important practical limitations through features of non-linearity and industrial grade manufacturing.The proposed implementation is dimensioned for a 50-ton structure and evaluated numerically for 25 actual earthquake records,in comparison with a linear SDA model and an equivalent conventional damper(CD).Individual and averaged results of acceleration and displacement time histories demonstrate vastly superior response compared to CD regarding induced accelerations for similar displacements.Performance equivalency with the linear SDA model indicates the stability of the gas spring implementation while guaranteeing predictability,tested endurance,proper tolerances,and off-axis motion resistance without requiring additional guiding components,as opposed to conventional springs.These features render the proposed implementation a promising solution for the realization of NSEs in seismic protection.展开更多
在以往惯质调谐质量阻尼器(tuned mass damper-inerter, TMDI)的研究基础上,引入非线性碰撞机制,提出一种带碰撞的新型惯质调谐质量阻尼器(pounding tuned mass damper-inerter, PTMDI)来对斜拉索的涡激振动进行控制。该阻尼器不仅能减...在以往惯质调谐质量阻尼器(tuned mass damper-inerter, TMDI)的研究基础上,引入非线性碰撞机制,提出一种带碰撞的新型惯质调谐质量阻尼器(pounding tuned mass damper-inerter, PTMDI)来对斜拉索的涡激振动进行控制。该阻尼器不仅能减小装置尺寸,又能利用振子在碰撞过程中产生的加速度突变来提高惯质器的质量放大效应,在一定程度上解决传统惯质型阻尼器一端尽量固接的安装方式,布置上更为灵活。建立了设有该装置的斜拉索涡激减振控制方程,分析了拉索涡激振动特性,并对其减振性能进行了研究。对阻尼器惯容参数和碰撞参数的影响及优化问题进行了探讨,给出了最优参数的取值方法。算例表明,所提PTMDI能显著降低斜拉索的涡激振动响应,且在所提优化方法得到的最优参数下具有更为优越的控制能力。对于常遇风时拉索出现的多模态涡激振动控制分析表明,碰撞机制能使PTMDI的鲁棒性得到提升,对多模态涡激振动也有相当程度的控制效果。展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 12172153 and51805216)the China Postdoctoral Science Foundation (No. 2023M731668)the Major Project of Basic Science (Natural Science) of the Jiangsu Higher Education Institutions of China(No. 22KJA410001)。
文摘Inspired by the demand of improving the riding comfort and meeting the lightweight design of the vehicle, an inerter-based X-structure nonlinear energy sink(IXNES) is proposed and applied in the half-vehicle system to enhance the dynamic performance. The X-structure is used as a mechanism to realize the nonlinear stiffness characteristic of the NES, which can realize the flexibility, adjustability, high efficiency, and easy operation of nonlinear stiffness, and is convenient to apply in the vehicle suspension, and the inerter is applied to replacing the mass of the NES based on the mass amplification characteristic. The dynamic model of the half-vehicle system coupled with the IX-NES is established with the Lagrange theory, and the harmonic balance method(HBM) and the pseudo-arc-length method(PALM) are used to obtain the dynamic response under road harmonic excitation. The corresponding dynamic performance under road harmonic and random excitation is evaluated by six performance indices, and compared with that of the original half-vehicle system to show the benefits of the IX-NES. Furthermore, the structural parameters of the IX-NES are optimized with the genetic algorithm. The results show that for road harmonic and random excitation, using the IX-NES can greatly reduce the resonance peaks and root mean square(RMS) values of the front and rear suspension deflections and the front and rear dynamic tire loads, while the resonance peaks and RMS values of the vehicle body vertical and pitching accelerations are slightly larger.When the structural parameters of the IX-NES are optimized, the vehicle body vertical and pitching accelerations of the half-vehicle system could reduce by 2.41% and 1.16%,respectively, and the other dynamic performance indices are within the reasonable ranges.Thus, the IX-NES combines the advantages of the inerter, X-structure, and NES, which improves the dynamic performance of the half-vehicle system and provides an effective option for vibration attenuation in the vehicle engineering.
基金This research was funded by the Natural Science Research Project of Higher Education Institutions in Anhui Province(Grant No.2022AH040045)the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(Grant No.2021-YF22).
文摘In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes.
基金Project supported by the National Natural Science Foundation of China(Nos.12232014 and 12072221)the Fundamental Research Funds for the Central Universities of China(No.2013017)。
文摘A two-degree-of-freedom(2DOF)vibration isolation structure with an integrated geometric nonlinear inerter(NI)device is proposed.The device is integrated into an inertial nonlinear energy sink(INES),and its vibration suppression performance is examined by the Runge-Kutta(RK)method and verified by the harmonic balance method(HBM).The new isolator is compared with a traditional vibration isolator.The results show a significant improvement in the vibration suppression performance.To investigate the effects of the excitation amplitude and initial condition on the dynamics of the system,a series of transmissibility-frequency response analyses are performed based on the displacement transmissibility.The energy flow of the system is analyzed,and numerous calculations reveal a series of ideal values for the energy sink in the NI-INES system.This study provides new insights for the design of vibration isolators.
基金National Key Research and Development Program of China under Grant No.2017YFC0703600 and No.2017YFC0703604。
文摘The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were systematically studied.First,the seismic responses of the base isolated structure with each control system under white noise excitation were obtained.Then,the structural parameter optimizations of the TVMD,TID and TMD were conducted by using three different objectives.The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses,including the base shear of the BIS,the absolute acceleration of structural SDOF,and the relative displacement between the base isolation floor and the foundation.Finally,considering the superstructure as a structural MDOF,a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations.The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases,and the effectiveness of TID was always better than TMD with the same mass ratio.The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD.Furthermore,the TVMD,when compared with TMD and TID,had better activation sensitivity and a smaller stroke.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2019EEVL03,2019D14 and 2020EEEVL0401National Natural Science Foundation of China under Grant No.51978525National Key R&D Program of China 2021YFE0112200。
文摘When dealing with the oscillations of fixed-base structures or machines induced by external forces,suppressing the vibrational impact on the adjacent structures and the environment helps to maintain the structural durability and ensure the users′comfort level.This study proposed an inerter-based optimal solution to suppress the vibrational forces and energy transmitted to the supporting ground by utilizing the great potential of the inerter.For the external force,which contains various frequency bands,the stochastic response and an energy balance analysis are conducted to evaluate the force transmissibility,structural displacement,and vibration power flow.Given the benefits of the inerter,a transmitted-force-based optimal design framework is proposed for inerter systems,of which the effectiveness is validated by numerical examples.The obtained results show that inerter systems are capable of providing significant reductions in the structural displacement and the force transmitted to the supporting ground.Particularly,the closed-form power equation indicated that a grounded inerter can suppress the force transmission and vibrational energy,thus leading to a less negative impact on the ground and environment.Revealing the working mechanism and optimal design strategy of the inerter can help solve the force-transmission control problem experienced by some practical structures.
文摘The diagonal inerter is integrated into a suspension vibration reduction system(SVRS).The dynamic model of the SVRS with diagonal inerter and damping is established.The dynamic model is of strong geometric nonlinearity.The retaining nonlinearity up to cubic terms is validated under impact excitation.The conditions omitting the static deformation are determined.The effects of the diagonal inerter on the vibration reduction performance of the SVRS are explored under impact and random excitations.The vibration reduction performance of the proposed SVRS with both diagonal inerter and damping is better than that of either the SVRS without them or the SVRS with the diagonal damping only.
基金European Union′s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant No.INSPIRE-813424(“INSPIRE-Innovative Ground Interface Concepts for Structure Protection”)。
文摘A novel implementation of negative stiffness elements(NSEs)is proposed,utilizing industrial grade nitrogen gas springs as pre-stressed stiffness elements in a configuration with lever arms.This NSE is combined with an inerter to form a stiff dynamic absorber(SDA)for vertical seismic protection of structures with base isolation.The SDA is optimized to minimize vertical accelerations while ensuring static structural integrity,excellent damping performance and containment of relative displacements.The introduction of gas springs in place of conventional linear springs addresses important practical limitations through features of non-linearity and industrial grade manufacturing.The proposed implementation is dimensioned for a 50-ton structure and evaluated numerically for 25 actual earthquake records,in comparison with a linear SDA model and an equivalent conventional damper(CD).Individual and averaged results of acceleration and displacement time histories demonstrate vastly superior response compared to CD regarding induced accelerations for similar displacements.Performance equivalency with the linear SDA model indicates the stability of the gas spring implementation while guaranteeing predictability,tested endurance,proper tolerances,and off-axis motion resistance without requiring additional guiding components,as opposed to conventional springs.These features render the proposed implementation a promising solution for the realization of NSEs in seismic protection.
文摘在以往惯质调谐质量阻尼器(tuned mass damper-inerter, TMDI)的研究基础上,引入非线性碰撞机制,提出一种带碰撞的新型惯质调谐质量阻尼器(pounding tuned mass damper-inerter, PTMDI)来对斜拉索的涡激振动进行控制。该阻尼器不仅能减小装置尺寸,又能利用振子在碰撞过程中产生的加速度突变来提高惯质器的质量放大效应,在一定程度上解决传统惯质型阻尼器一端尽量固接的安装方式,布置上更为灵活。建立了设有该装置的斜拉索涡激减振控制方程,分析了拉索涡激振动特性,并对其减振性能进行了研究。对阻尼器惯容参数和碰撞参数的影响及优化问题进行了探讨,给出了最优参数的取值方法。算例表明,所提PTMDI能显著降低斜拉索的涡激振动响应,且在所提优化方法得到的最优参数下具有更为优越的控制能力。对于常遇风时拉索出现的多模态涡激振动控制分析表明,碰撞机制能使PTMDI的鲁棒性得到提升,对多模态涡激振动也有相当程度的控制效果。