期刊文献+
共找到784,903篇文章
< 1 2 250 >
每页显示 20 50 100
Material point method simulation of hydro-mechanical behaviour in twophase porous geomaterials: A state-of-the-art review 被引量:2
1
作者 Xiangcou Zheng Shuying Wang +1 位作者 Feng Yang Junsheng Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2341-2350,共10页
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat... The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers. 展开更多
关键词 Coupled problems hydro-mechanical behaviour Large deformation Material Point Method(MPM)
下载PDF
Development of CASRock for modeling multi-fracture interactions in rocks under hydro-mechanical conditions
2
作者 Wenbo Hou Pengzhi Pan Zhaofeng Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4399-4415,共17页
The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At pre... The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At present,modeling the mechanical behavior of multiple fractures is still challenging.Under the condition of multiple fractures,the opening,closing,sliding,propagation and penetration of fractures become more complicated.In order to simulate the HM coupling behavior of multi-fracture system,the paper presents a novel numerical scheme,including mesh reconstruction and topology generation algorithm,to efficiently and accurately represent fractures and their propagation process,and a potential function-based algorithm to address contact problem.The fracture contact algorithm does not need to set contact pairs and thus is suitable for complex contact situations from small to large deformations induced by HM loading.The topology of fracture interfaces is constructed by the dynamic adding algorithm,which makes the mesh reconstruction more rapid in the modeling of fracturing process,especially in the case of multiple fractures intersections.The numerical scheme is implemented in CASRock,a self-developed numerical code,to simulate the propagation process of rock fractures and the interaction of multiple fractures under the condition of HM coupling.To verify the suitability of the code,a series of tests were performed.The code was then applied to simulate hydraulic fracture propagation and fracture interactions caused by fluid injection.The ability of this method to study fracture propagation,multi-fracture interaction and fracture network evolution under hydro-mechanical coupling conditions is demonstrated. 展开更多
关键词 CASRock Multi-fracture interaction hydro-mechanical(HM)coupling Efficient grid reconstruction and topology generation Distributed contact computation
下载PDF
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
3
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
下载PDF
Passive activity enhances residual control ability in patients with complete spinal cord injury
4
作者 Yanqing Xiao Mingming Gao +6 位作者 Zejia He Jia Zheng Hongming Bai Jia-Sheng Rao Guiyun Song Wei Song Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2337-2347,共11页
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these... Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury. 展开更多
关键词 complete spinal cord injury cycle training epidural electrical stimulation motor training passive activity physiological state spinal cord circuit surface electromyography volitional control task
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
5
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Characteristics on Hydro-mechanical Transmission in Power Shift Process 被引量:22
6
作者 HU Jibin WEI Chao YUAN Shihua JING Chongbo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期50-56,共7页
To improve the vehicular power and acceleration performance and reduce the shift impact, the study of the characteristics on power shift is necessary. Based on the flexible hydraulic unit of hydro-mechanical transmiss... To improve the vehicular power and acceleration performance and reduce the shift impact, the study of the characteristics on power shift is necessary. Based on the flexible hydraulic unit of hydro-mechanical transmission, this paper explores the feasibility of shift without power interruption. With the four models concerning displacement ratio, rotational speed, rotational torque and power at ideal shift point, the characteristics on power shift in different running conditions are analyzed, and the rules of power shift are revealed. The theoretical analysis and test results show that the hydro-mechanical transmission can shift without power interruption in different running conditions. Furthermore, there exists an ideal shift point in theory, at which point the cycle power in hydro-mechanical transmission can't be generated, and the impact on the system can be reduced to the minimum. However, if before or after this ideal shift point, a cycle power can be generated. 展开更多
关键词 stepless transmission hydro-mechanical transmission power shift
下载PDF
Investigation of SUS304 Stainless Steel with Warm Hydro-mechanical Deep Drawing 被引量:7
7
作者 Yongchao XU, Dachang KANG and Shihong ZHANGSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaShihong ZHANGInstitute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第1期92-93,共2页
Basing on warm mechanical property of SUS304 stainless steel and hydro-mechanical deep drawing process, warm hydro-mechanical deep drawing process is proposed and discussed with experiments in this paper. The experime... Basing on warm mechanical property of SUS304 stainless steel and hydro-mechanical deep drawing process, warm hydro-mechanical deep drawing process is proposed and discussed with experiments in this paper. The experiments are performed at four different temperatures. The results show that the formability of stainless steel is improved under the condition of warm temperature. Warm hydro-mechanical deep drawing raises limiting drawing ratio of SUS304 effectively, and limiting drawing ratio 3.3 is obtained, which is beyond 2.0 with conventional deep drawing. The temperature of 90℃ is beneficial to the forming of SUS304 stainless steel, the strain-induced martensite is controlled effectively, and the thickness distribution is more uniform. 展开更多
关键词 SUS304 stainless steel Warm hydro-mechanical deep drawing FORMING Cylindrical cup
下载PDF
Hydro-mechanical behavior of an argillaceous limestone considered as a potential host formation for radioactive waste disposal 被引量:3
8
作者 T.S.Nguyen Zhenze Li +2 位作者 Grant Su M.H.B.Nasseri R.P.Young 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1063-1081,共19页
The Canadian Nuclear Safety Commission(CNSC), Canada’s nuclear regulator, conducts regulatory research in order to develop independent knowledge on safety aspects related to the deep geological disposal of radioactiv... The Canadian Nuclear Safety Commission(CNSC), Canada’s nuclear regulator, conducts regulatory research in order to develop independent knowledge on safety aspects related to the deep geological disposal of radioactive wastes. In Canada, the Cobourg limestone of the Michigan Basin is currently considered as a potential host formation for geological disposal. The understanding of the hydromechanical behavior of such a host rock is one of the essential requirements for the assessment of its performance as a barrier against radionuclide migration. The excavation of galleries and shafts of a deep geological repository(DGR) can induce damage to the surrounding rock. The excavation damaged zone(EDZ) has higher permeability and reduced strength compared to the undisturbed rock and those factors must be considered in the design and safety assessment of the DGR. The extent and characteristics of the EDZ depend on the size of the opening, the rock type and its properties, and the in situ stresses, among other factors. In addition, the extent and characteristics of the EDZ can change with time due to rock strength degradation, evolution of fractures within the EDZ, and the redistribution of pore pressure around the excavation. In this research project initiated by the CNSC, the authors conducted experimental and theoretical research in order to assess the hydro-mechanical behavior of the Cobourg limestone under undamaged and damaged conditions, both in the short and long terms. The short-term behavior was investigated by a program of triaxial tests with the measurement of permeability evolution on specimens of Cobourg limestone. The authors formulate a coupled hydro-mechanical model to simulate the stress-strain response and evolution of the permeability during those triaxial tests. Using creep and relaxation data from a similar limestone, the model was extended to include its long-term strength degradation. The model successfully simulated both the short-and long-term hydro-mechanical behavior of the limestone during those tests. This provides confidence that the main physical processes have been adequately understood and formulated. 展开更多
关键词 hydro-mechanical behavior Excavation damage Deep geological repository(DGR) LIMESTONE Poro-elasto-plasticity
下载PDF
Distribution characteristics and impact on pump's efficiency of hydro-mechanical losses of axial piston pump over wide operating ranges 被引量:4
9
作者 XU Bing HU Min +1 位作者 ZHANG Jun-hui MAO Ze-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期609-624,共16页
A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect... A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance. 展开更多
关键词 axial piston pump EFFICIENCY hydro-mechanical losses digital prototyping distribution characteristics over wideoperating ranges
下载PDF
A 3D microseismic data-driven damage model for jointed rock mass under hydro-mechanical coupling conditions and its application 被引量:2
10
作者 Jingren Zhou Jinfu Lou +3 位作者 Jiong Wei Feng Dai Jiankang Chen Minsi Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期911-925,共15页
Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,i... Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,it is always challenging to accurately measure rock mass properties.In this study,a three-dimensional(3D)microseismic(MS)data-driven damage model for jointed rock mass under hydro-mechanical coupling conditions is proposed.It is a 3D finite element model that takes seepage,damage and stress field effects into account jointly.Multiple factors(i.e.joints,water and microseismicity)are used to optimize the rock mass mechanical parameters at different scales.The model is applied in Shirengou iron mine to study the damage evolution of rock mass and assess the crown pillar stability during the transition from open-pit to underground mining.It is found that the damage pattern is mostly controlled by the structure,water and rock mass parameters.The damage pattern is evidently different from the two-dimensional result and is more consistent with the field observations.This difference is caused by the MS-derived damage acting on the rock mass.MS data are responsible for gradually correcting the damage zone,changing the direction in which it expands,and promoting it to evolve close to reality.For the crown pillar,the proposed model yields a more trustworthy safety factor.In order to guarantee the stability of the pillar,it is suggested to take waterproof and reinforcement measures in areas with a high degree of damage. 展开更多
关键词 Microseismic monitoring Numerical simulation Rock damage Jointed rock mass hydro-mechanical coupling
下载PDF
A dissolution-diffusion sliding model for soft rock grains with hydro-mechanical effect 被引量:4
11
作者 Z.Liu C.Y.Zhou +2 位作者 B.T.Li Y.Q.Lu X.Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第3期457-467,共11页
The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study... The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect. 展开更多
关键词 Soft rock hydro-mechanical (HM) effect Mineral dissolution-diffusion Grain sliding model
下载PDF
Research and Design of Hydro-mechanical Continuously Variable Transmission for Tractors 被引量:2
12
作者 XU Liyou ZHOU Zhili +1 位作者 ZHANG Mingzhu LI Yan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2006年第2期182-186,共5页
A new type continuous variable transmission device, a hydro-mechanical continuously variable transmission (HMCVT) for agricultural tractors is developed, which is composed of a single planetary gear differential tra... A new type continuous variable transmission device, a hydro-mechanical continuously variable transmission (HMCVT) for agricultural tractors is developed, which is composed of a single planetary gear differential train, a hydraulic transmission system consisted of variable displacement pump and fixed displacement motor and a multi-gear fixed step radio transmission. Based on the analysis of types of hydrostatic mechanical transmission (HMT) and styles of hydraulic transmission, the general drive scheme for HMCVT is obtained. The method of selecting mechanical parameters and hydraulic units is explained, and the stepless speed regulation characteristic of HMCVT is analyzed. This paper also specializes the calculating method of transmission efficiency. It shows that tractors assembled with HMCVT can obtain a continuously variable speed and achieve high drive efficiency. 展开更多
关键词 TRACTORS hydro-mechanical continuously variable transmission transmission scheme regulating characteristics transmission efficiency
下载PDF
Hydro-mechanical coupling mechanism on joint of clay core-wall and concrete cut-off wall 被引量:3
13
作者 罗玉龙 詹美礼 +1 位作者 盛金昌 吴强 《Journal of Central South University》 SCIE EI CAS 2013年第9期2578-2585,共8页
The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between c... The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam. 展开更多
关键词 high earth and rockfill dam soil/structure interface hydro-mechanical coupling mechanism seepage failure shear failure
下载PDF
Numerical simulation of sanding using a coupled hydro-mechanical sand erosion model 被引量:1
14
作者 Majid Fetrati Ali Pak 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期811-820,共10页
Mechanical failure of materials adjacent to the production cavity and material disaggregation caused by fluid drag are considered as the most important parameters that affect sand production.In light of such factors,t... Mechanical failure of materials adjacent to the production cavity and material disaggregation caused by fluid drag are considered as the most important parameters that affect sand production.In light of such factors,the coupling of two mechanisms-mechanical instability and hydrodynamic erosion-is indispensable in order to model this phenomenon successfully.This paper examines the applicability of a coupled hydro-mechanical erosion criterion for simulating sand production using the finite element method.The porous medium was considered fully saturated.The onset of sanding and production of sand were predicted by coupling mechanical failure and subsequent erosion of the grain particles utilizing a sanding model.To consider the erosion process,the Papamichos and Stavropoulou(1998)’s sand erosion criterion was incorporated into the finite element code.Arbitrary Lagrangian-Eulerian(ALE)adaptive mesh approach was used to account for large amounts of erosive material loss.Besides,in order to address the problem of severe mesh distortion,the“mesh mapping technique”was employed.Sand production in a horizontal wellbore and in a field case was simulated to demonstrate capabilities of the proposed model.In addition,principal parameters affecting sand production,including in situ stresses,cohesion,perforation orientation,and drawdown were examined.The results indicated the efficiency of the model used in evaluation of sanding in the field.Parametric studies indicated that in situ stresses and formation cohesion could be considered as dominant factors affecting the amount of sand production. 展开更多
关键词 Sand production Finite element method Sanding criterion hydro-mechanical coupling
下载PDF
Accounting for anisotropic effects in the prediction of the hydro-mechanical response of a ventilated tunnel in an argillaceous rock 被引量:2
15
作者 Alain Millard Alex Bond +3 位作者 Shigeo Nakama Chengyuan Zhang Jean-Dominique Barnichon Benoit Garitte 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第2期97-109,共13页
In order to investigate the hydro-mechanical (HM) and chemical perturbations induced in an argillaceous formation by forced ventilation during the operational period of a nuclear waste repository, a specific experim... In order to investigate the hydro-mechanical (HM) and chemical perturbations induced in an argillaceous formation by forced ventilation during the operational period of a nuclear waste repository, a specific experiment has been performed in a tunnel, at Mont Terri Underground Research Laboratory (URL) in Switzerland. This experiment has been selected in the international project DECOVALEX for model vali- dation and the numerical simulation of this ventilation experiment (VE) is the object of the present paper. Since the argillaceous rock exhibits anisotropic properties, particular attention is given to the evaluation of the effects of various anisotropic features on the predicted results. In situ measurements such as relative humidity (RH), global water mass extracted, pore water pressure, water content, and relative displace- ments are compared to predictions using both isotropic and anisotropic parameters. Water permeability anisotropy is shown to be the most influencing parameter by far, whereas in situ stress anisotropy has an effect only during the excavation phase. The anisotropy for mechanical parameterization has also some influence, in particular through HM couplings. These HM couplings have the potential to be very significant in terms of providing confidence in describing the experimental observation, and should be considered for further investigation. 展开更多
关键词 hydro-mechanical (HM) coupling Numerical modelling ANISOTROPY Mont Terri Underground Research Laboratory (URL) Ventilation experiment (VE) ARGILLITE
下载PDF
Calibration of coupled hydro-mechanical properties of grain-based model for simulating fracture process and associated pore pressure evolution in excavation damage zone around deep tunnels 被引量:2
16
作者 Kiarash Farahmand Mark S.Diederichs 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期60-83,共24页
The objective of this paper is to develop a methodology for calibration of a discrete element grain-based model(GBM)to replicate the hydro-mechanical properties of a brittle rock measured in the laboratory,and to appl... The objective of this paper is to develop a methodology for calibration of a discrete element grain-based model(GBM)to replicate the hydro-mechanical properties of a brittle rock measured in the laboratory,and to apply the calibrated model to simulating the formation of excavation damage zone(EDZ)around underground excavations.Firstly,a new cohesive crack model is implemented into the universal distinct element code(UDEC)to control the fracturing behaviour of materials under various loading modes.Next,a methodology for calibration of the components of the UDEC-Voronoi model is discussed.The role of connectivity of induced microcracks on increasing the permeability of laboratory-scale samples is investigated.The calibrated samples are used to investigate the influence of pore fluid pressure on weakening the drained strength of the laboratory-scale rock.The validity of the Terzaghi’s effective stress law for the drained peak strength of low-porosity rock is tested by performing a series of biaxial compression test simulations.Finally,the evolution of damage and pore pressure around two unsupported circular tunnels in crystalline granitic rock is studied. 展开更多
关键词 Coupled hydro-mechanical properties Excavation damage zone(EDZ) Grain-based model(GBM)calibration Stress-fracturing of rock Cohesive crack model Stress-dependent permeability
下载PDF
Coupled hydro-mechanical effect of a fractured rock mass under high water pressure 被引量:2
17
作者 Zhongming Jiang Shurong Feng Sheng Fu 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期88-96,共9页
To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displ... To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displacement of the rock mass,was designed according to the hydrogeological condition of Heimifeng pumped storage power station.With the assumption of radial water flow pattern in the rock mass during the HPPT,a theoretical formula was presented to estimate the coefficient of permeability of the rock mass using water pressures in injection and measuring boreholes.The variation in permeability of the rock mass with the injected water pressure was studied according to the suggested formula.By fitting the relationship between the coefficient of permeability and the injected water pressure,a mathematical expression was obtained and used in the numerical simulations.For a better understanding of the relationship between the pore water pressure and the displacement of the rock mass,a 3D numerical method based on a coupled hydro-mechanical theory was employed to simulate the response of the rock mass during the test.By comparison of the calculated and measured data of pore water pressure and displacement,the deformation behaviors of the rock mass were analyzed.It is shown that the variation of displacement in the fractured rock mass is caused by water flow passing through it under high water pressure,and the rock deformation during the test could be calculated by using the coupled hydro-mechanical model. 展开更多
关键词 fractured rock mass permeability under the condition of high water head hydro-mechanical coupling effect
下载PDF
Analysis of hydro-mechanical processes in a ventilated tunnel in an argillaceous rock on the basis of different modelling approaches 被引量:3
18
作者 B.Garitte A.Bond +4 位作者 A.Millard C.Zhang C.Mcdermott S.Nakama A.Gens 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第1期1-17,共17页
In this paper, a modelling benchmark exercise from the DECOVALEX-2011 project is presented. The bench- mark is based on the performance and results of a laboratory drying test and of the ventilation experiment (VE) ... In this paper, a modelling benchmark exercise from the DECOVALEX-2011 project is presented. The bench- mark is based on the performance and results of a laboratory drying test and of the ventilation experiment (VE) carried out in the Mont Terri Underground Rock Laboratory (URL). Both tests involve Opalinus clay. The work aims at the identification, understanding and quantification of mechanisms taking place during the ventilation of a gallery in argillaceous host rocks on one hand and at investigating the capacity of different codes and individuals to reproduce these processes on the other hand. The 4-year in situ VE took place in a 1.3 m diameter unlined tunnel and included two resaturation-desaturation cycles. The test area was equipped with over one hundred sensors (including the global water mass balance of the system, relative humidity (RH), water content, liquid pressure, relative displacement and concentration of some chemical species) to monitor the rock behaviour during ventilation. The laboratory drying experiment, carried out before the VE, was designed to mimic the in situ conditions. The work was organized in a progressive manner in terms of complexity of the computations to be performed, geared towards the full hydro-mechano-chemical (HMC) understanding of the VE, the final objective. The main results from the modelling work reported herein are that the response of the host rock to ventilation in argillaceous rocks is mainly governed by hydraulic processes (advective Darcy flow and non-advective vapour diffu- sion) and that the hydro-mechanical (TM) back coupling is weak. A ventilation experiment may thus be regarded as a large scale-long time pump test and it is used to determine the hydraulic conductivity of the rock mass. 展开更多
关键词 hydro-mechanical (HM) couplingNumerical modellingMont Terri Underground Rock Laboratory(URL)Ventilation experiment (VE)ArgilliteWater permeability
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:4
19
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Coupled hydro-mechanical evolution of fracture permeability in sand injectite intrusions
20
作者 Quan Gan Derek Elsworth +2 位作者 Yixin Zhao Antonio Grippa Andrew Hurst 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期742-751,共10页
Sandstone“injectite”intrusions are generally developed by the fluidization of weakly cemented sandstones and their subsequent injection into fractured reservoirs.In this work,a continuum coupled hydromechanical mode... Sandstone“injectite”intrusions are generally developed by the fluidization of weakly cemented sandstones and their subsequent injection into fractured reservoirs.In this work,a continuum coupled hydromechanical model TOUGH-FLAC3D is applied to simulate the discrete fracture network in large-scale sand injectite complexes.A sand production constitutive model is incorporated to consider the formation of sand through plastic deformation and its influence on evolution of fracture permeability.Overpressures in the fluidized sand slurry drives the injection with sand dikes intruded upwards,typically into previously low permeability“tight”mudstone formations.The contrast in poroelastic properties of the underlying weak sandstone and overlying injectite receptor directly affects the evolution of fracture aperture both during and after intrusion.Fluid drainage into the unconsolidated matrix may reduce the extent of fracture aperture growth,through the formation of shear bands.The results of this work have broad implications related to the emplacement of sandstone intrusions and subsequent hydrocarbon accumulation,maturation and then production. 展开更多
关键词 Sandstone intrusions Fracture permeability Sand fluidization hydro-mechanical coupling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部