Hydrocarbon expulsion features and resource potential evaluation of source rocks are crucial for the petroleum exploration.High-maturity marine source rocks have not exhibited a hydrocarbon expulsion mode owing to the...Hydrocarbon expulsion features and resource potential evaluation of source rocks are crucial for the petroleum exploration.High-maturity marine source rocks have not exhibited a hydrocarbon expulsion mode owing to the lack of low-maturity source rocks in deep petroliferous basins.We considered the Ediacaran microbial dolomite in the Sichuan Basin,the largest high-maturity marine gas layer in China,to exhibit a method that quantitatively characterizes the hydrocarbon expulsion of high-maturity marine source rocks.The experiment of fluid inclusion,rock pyrolysis,and vitrinite reflectance(Ro)of 119 microbial dolomite core samples obtained from the Dengying Formation were performed.A hydrocarbon expulsion model of high-maturity source rock was established,and its resource potential was evaluated.The results showed that the Ediacaran microbial dolomite in the Sichuan Basin is a good source rock showing vast resource potential.The hydrocarbon expulsion threshold is determined to be vitrinite reflectance at 0.92%.The hydrocarbon expulsion intensities in the geologic history is high with maximum of 1.6×10^(7)t/km^(2).The Ediacaran microbial dolomite expelled approximately 1.008×10^(12)t of hydrocarbons,and the recoverable resource was 1.5×10^(12)m^(3).The region can be categorized into areasⅠ,Ⅱ,Ⅲ,andⅣ,in decreasing order of hydrocarbon expulsion intensity.Areas with a higher hydrocarbon expulsion intensity have a lower drilling risk and should be prioritized for exploration in the orderⅠ>Ⅱ>Ⅲ>Ⅳ.Two areas,northern and central parts of Ediacaran in the Sichuan Basin,were selected as prospects which had the drilling priority in the future gas exploration.The production data of 55 drilled wells verified the high reliability of this method.This model in this study does not require low-maturity samples and can be used for evaluating high-maturity marine source rocks,which has broad applicability in deep basins worldwide.展开更多
Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3xs) in the Western Sichuan Basin (WSD) are currently regarded as the most prolific emerging unconventional gas plays in ...Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3xs) in the Western Sichuan Basin (WSD) are currently regarded as the most prolific emerging unconventional gas plays in China. This study conducted a conventional evaluation of T3x5 source rocks in the WSD, and investigated their hydrocarbon generation and expulsion characteristics, including intensity, efficiency and amount. The results show that, the T3x5 source rocks are thick (generally 〉200 m), and have a high total organic content (TOC), ranging from 2.5 to 4.5 wt%. It is thus indivative of a great hydrocarbon generation potential when they underwent high thermal evolution (Ro〉1.2%) in the area. In addition, an improved method of hydrocarbon generation potential is applied, indicating that the source rocks reached a hydrocarbon expulsion threshold with vitrinite reflectance (Ro) reaching 1.06%. and that the comprehensive hydrocarbon expulsion efficiency is about 60%. The amount of hydrocarbon generation and expulsion from Tax5 source rocks is 3.14x10^10 t and 1.86x10^10 t, respectively, with a residual amount of 1.28x10^10t within them. Continuous-type tight-sand gas is predicted to have developed in the Jurassic in the Chengdu Sag of the WSD because of the good source-reservoir configuration; the Jurassic sandstone reservoirs are tight, and the gas expelled from the T3xs source rocks migrates for very short distances vertically and horizontally. The amount of gas accumulation in the Jurassic reservoirs derived from T3x5 source rocks is up to 9.3x10s t. Geological resources of shale gas are up to 1.05x10TM t. Small differences between the amounts calculated by the volumetric method and those obtained by hydrocarbon generation potential method may be due to other gas accumulations present within interbedded sands associated with gas shales.展开更多
The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion effi...The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion efficiency and roof/floor sealing conditions of the Chang 7_(3) shale,and evaluates the major enrichment type of shale oil in this interval.The average organic matter transformation ratio of the Chang 7_(3) shale is about 45%;in other words,more than 50%of the organic matters have not transformed to hydrocarbons,and the lower the maturity,the greater the proportion of untransformed organic matters.The cumulative hydrocarbon expulsion efficiency of the transformed hydrocarbon is 27.5% on average,and the total proportion of untransformed organic matters plus retained hydrocarbons is greater than 70%.The relative hydrocarbon expulsion efficiency of the Chang 7_(3) shale is 60%on average,that is,about 40% of hydrocarbons retain in the shale.The Chang 7_(3) shale corresponds to Chang 7_(1+2) and Chang 8 sandstones as the roof and floor,respectively,and is further overlaid by Chang 6 shale,where extensive low porosity and low permeability–tight oil reservoirs have formed in the parts with relatively good porosity and permeability.Moreover,the Chang 7_(3) shale is tested to be in a negative pressure system(the pressure coefficient of 0.80–0.85).Therefore,the roof/floor sealing conditions of the Chang 7_(3) shale are poor.The retained hydrocarbons appear mostly in absorbed status,with low mobility.It is concluded that the medium–high mature shale oil is not the major enrichment type of shale oil in the Chang 7_(3) shale,but there may be enrichment opportunity for shale oil with good mobility in the areas where the sealing conditions are good without faults and fractures and oil reservoirs are formed off Chang 7_(1+2),Chang 6 and Chang 8.Furthermore,low–medium mature shale oil is believed to have great potential and is the major enrichment type of shale oil in the Chang 7_(3) shale.It is recommended to prepare relevant in-situ conversion technologies by pilot test and figure out the resource availability and distribution.展开更多
To thoroughly understand the dynamic mechanism of hydrocarbon expulsion from deep source rocks,in this study,five types of hydrocarbon expulsion dynamics(thermal expansion,hydrocarbon diffusion,compaction,product volu...To thoroughly understand the dynamic mechanism of hydrocarbon expulsion from deep source rocks,in this study,five types of hydrocarbon expulsion dynamics(thermal expansion,hydrocarbon diffusion,compaction,product volume expansion,and capillary pressure difference(CPD))are studied.A model is proposed herein to evaluate the relative contribution of different dynamics for hydrocarbon expulsion using the principle of mass balance,and the model has been applied to the Cambrian source rocks in the Tarim Basin.The evaluation results show that during hydrocarbon expulsion from the source rocks,the relative contribution of CPD is the largest(>50%),followed by compaction(10%-40%),product volume expansion(5%-30%),and thermal expansion(2%-20%).The relative contribution of diffusion to hydrocarbon expulsion is minimal(<10%).These results demonstrate that CPD plays an important role in the hydrocarbon expulsion process of deep source rocks.The hydrocarbon expulsion process of source rocks can be categorized into three stages based on the contribution of different dynamics to the process:the first stage is dominated by compaction and diffusion to expel hydrocarbons,the second stage is dominated by product volume expansion and CPD,and the third stage is dominated by product volume expansion and CPD.This research offers new insights into hydrocarbon exploration in tight oil and gas reservoirs.展开更多
The hydrocarbon charge history of the Paleogene in the northern Dongpu Depression was analyzed in detail based on a comprehensive analysis of the generation and expulsion history of the major hydrocarbon source rocks,...The hydrocarbon charge history of the Paleogene in the northern Dongpu Depression was analyzed in detail based on a comprehensive analysis of the generation and expulsion history of the major hydrocarbon source rocks, fluorescence microscopic features and fluid inclusion petrography. There were two main stages of hydrocarbon generation and expulsion of oil from the major hydrocarbon source rocks. The first stage was the main hydrocarbon expulsion stage. The fluorescence microscopic features also indicated two stages of hydrocarbon accumulation. Carbonaceous bitumen, asphaltene bitumen and colloidal bitumen reflected an early hydrocarbon charge, whereas the oil bitumen reflected a second hydrocarbon charge. Hydrocarbon inclusions also indicate two distinct charges according to the diagenetic evolution sequence, inclusion petrography features combined with the homogenization temperature and reservoir burial history analysis. According to these comprehensive analysis results, the hydrocarbon charge history of the Paleogene reservoir in the northern Dongpu Depression was divided into two phases. The first phase was from the late Dongying depositional period of the Oligocene to the early uplift stages of the late Paleogene. The second phase was from the late Minghuazhen period of the Pliocene to the Quaternary. Reservoirs formed during the first period were widely distributed covering the entire area. In contrast,reservoirs formed during the second period were mainly distributed near the hydrocarbon generation sags. Vertically, it was characterized by a single phase in the upper layers and two phases in the lower layers of the Paleogene.展开更多
Based on the theory of formation dynamics of oil/gas pools, the Dongying sag can be divided into three dynamic systems regarding the accumulation of oil and gas: the superpressure closed system, the semi-closed syste...Based on the theory of formation dynamics of oil/gas pools, the Dongying sag can be divided into three dynamic systems regarding the accumulation of oil and gas: the superpressure closed system, the semi-closed system and the normal pressure open system. Based on the analysis of genesis of superpressure in the superpressure closed system and the rule of hydrocarbon expulsion, it is found that hydrocarbon generation is related to superpressure, which is the main driving factor of hydrocarbon migration. Micro fractures formed by superpressure are the main channels for hydrocarbon migration. There are three dynamic patterns for hydrocarbon expulsion: free water drainage, hydrocarbon accumulation and drainage through micro fissures. In the superpressure closed system, the oil-driving-water process and oil/gas accumulation were completed in lithologic traps by way of such two dynamic patterns as episodic evolution of superpressure systems and episodic pressure release of faults. The oil-bearing capacity of lithologic traps is intimately related to reservoir-forming dynamic force. Quantitative evaluation of dynamic conditions for pool formation can effectively predict the oil-bearing capability of traps.展开更多
The Lynedoch field is located on the west flank of the Calder Graben in the north-eastern Bonaparte Basin, Australia. The data from the wells Lynedoch 1 and Lynedoch 2 and Seismic Line N11809 were used to reconstruct ...The Lynedoch field is located on the west flank of the Calder Graben in the north-eastern Bonaparte Basin, Australia. The data from the wells Lynedoch 1 and Lynedoch 2 and Seismic Line N11809 were used to reconstruct the burial and thermal histories and evaluate the hydrocarbon generated and expelled from the Jurassic to Early Cretaceous source rocks of the study area. Basin Mod 1-D and 2-D softwares were used for modeling. The Upper Jurassic Cleia (Lower Frigate) and Lower Cretaceous Echuca Shoals formations source rocks in the well Lynedoch 1 were a fair-to-good source richness with poor hydrocarbon generating potential, showing kerogen type III and gas prone. The Middle Jurassic Plover Formation source rock in the well Lynedoch 2 was a good organic matter richness with poor hydrocarbon generative potential, the late Middle Jurassic (Callovian) Elang Formation source rock in the same well was a fair source rock with poor hydrocarbon generation potential, and the Lower Cretaceous Echuca Shoals Formation source rock in the same well was a fair-to-very good organic richness with poor-to-fair hydrocarbon generating potential, gas prone with kerogen type III, and reaching wet gas window at present day. These previous formations of the both wells generated oil at the Late Cretaceous and gas at the Early Neogene. But, only Echuca Shoals Formation source rock in the well Lynedoch 2 was able to expelled hydrocarbon at the Middle Paleogene and continued up to present day. This Formation represents fair to slightly good potential source rock in the Lynedoch field.展开更多
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil...Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale.展开更多
Research on effective source rocks directly affects the accuracy of identifying hydrocarbon resources, and indirectly affects the exploration decisions in petroliferous basins. Although the previous evaluation methods...Research on effective source rocks directly affects the accuracy of identifying hydrocarbon resources, and indirectly affects the exploration decisions in petroliferous basins. Although the previous evaluation methods of effective source rocks vary relatively widely, a complete quantitative evaluation approach has not yet been developed. For that reason, we redefined the concept of effective source rocks based on the existing research results. Surrounding this definition, and guided by the hydrocarbon expulsion theory, the quantitative model called "two stages and three steps" method is established to predict effective source rocks. Its application in the Bozhong Depression indicates that among the four sets source rocks in the Bozhong Depression, the Member 3 of the Shahejie Formation (Es 3 ) has the largest effective source rock thickness, and the Member 1 Member 2 of the Shahejie Formation (Es 1+2 ) is the second largest .The effective part of dark mudstone is only 30%-80% of the total volume and with the increase of buried depth and improvement of quality, the effective part increases. Comprehensive analysis indicates that the "two stages and three steps" method is a practical technique for effective source rock prediction.展开更多
Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evoluti...Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evolution,shale oil occurrence,and pore/fracture evolution mechanism.In conjunction with a substantial amount of oil testing and production data,the Gulong shale oil enrichment layers are evaluated and the production behaviors and decline law are analyzed.The results are drawn in four aspects.First,the Gulong shales are in the stage of extensive hydrocarbon expulsion when R_(0) is 1.0%-1.2%,with the peak hydrocarbon expulsion efficiency of 49.5%approximately.In the low-medium maturity stage,shale oil migrates from kerogen to rocks and organic pores/fractures.In the medium-high maturity stage,shale oil transforms from adsorbed state to free state.Second,the clay mineral intergranular pores/fractures,dissolution pores,and organic pores make up the majority of the pore structure.During the transformation,clay minerals undergo significant intergranular pore/fracture development between the minerals such as illite and illite/smectite mixed layer.A network of pores/fractures is formed by organic matter cracking.Third,free hydrocarbon content,effective porosity,total porosity,and brittle mineral content are the core indicators for the evaluation of shale oil enrichment layers.Class-I layers are defined as free hydrocarbon content equal or greater than 6.0 mg/g,effective porosity equal or greater than 3.5%,total porosity equal or greater than 8.0%,and brittle mineral content equal or greater than 50%.It is believed that the favourable oil layers are Q2-Q3 and Q8-Q9.Fourth,the horizontal wells in the core area of the light oil zone exhibit a high cumulative production in the first year,and present a hyperbolic production decline pattern,with the decline index of 0.85-0.95,the first-year decline rate of 14.5%-26.5%,and the single-well estimated ultimate recovery(EUR)greater than 2.0×10^(4)t.In practical exploration and production,more efforts will be devoted to the clarification of hydrocarbon generation and expulsion mechanisms,accurate testing of porosity and hydrocarbon content/phase of shale under formation conditions,precise delineation of the boundary of enrichment area,relationship between mechanical properties and stimulated reservoir volume,and enhanced oil recovery,in order to improve the EUR and achieve a large-scale,efficient development of shale oil.展开更多
With increased exploration in the faulted basins of eastern China,petroleum exploration in this region has been challenged by unclear remaining petroleum resources distribution,complex reservoir and hydrocarbon enrich...With increased exploration in the faulted basins of eastern China,petroleum exploration in this region has been challenged by unclear remaining petroleum resources distribution,complex reservoir and hydrocarbon enrichment patterns,and lacking of suitable exploration techniques.Aiming at resolving these problems,studies on source rocks,reservoirs,hydrocarbon accumulation and geophysical prospection were carried out by laboratory analysis,reservoir anatomy,and seismic analysis.A highlyefficient hydrocarbon generation/expulsion model of source rocks in saline environment was established,which aided in the discovery of a new set of source rocks in the Jiyang Depression.This study also reveals the formation process of high-quality reservoir by alternating acid and alkaline fluids during deposition and diagenesis,and pattern of secondary pores development in deep clastic rocks.Through the fine anatomy of the oil reservoirs,an orderly distribution pattern of the oil reservoirs is established,and the potential exploration targets in the undrilled area are identified.In addition,single-point highdensity seismic acquisition and high-resolution imaging technologies are developed,enabling fine and efficient exploration in areas with high exploration maturity.The research result plays a leading and demonstrative role in the fine and efficient exploration of faulted basins in eastern China.展开更多
基金supported by the Open Fund Project of State Key Laboratory of Lithospheric Evolution [SKL-K202103]support of the Exploration and Development Research Institute of Petro China Southwest Oil & Gas Field
文摘Hydrocarbon expulsion features and resource potential evaluation of source rocks are crucial for the petroleum exploration.High-maturity marine source rocks have not exhibited a hydrocarbon expulsion mode owing to the lack of low-maturity source rocks in deep petroliferous basins.We considered the Ediacaran microbial dolomite in the Sichuan Basin,the largest high-maturity marine gas layer in China,to exhibit a method that quantitatively characterizes the hydrocarbon expulsion of high-maturity marine source rocks.The experiment of fluid inclusion,rock pyrolysis,and vitrinite reflectance(Ro)of 119 microbial dolomite core samples obtained from the Dengying Formation were performed.A hydrocarbon expulsion model of high-maturity source rock was established,and its resource potential was evaluated.The results showed that the Ediacaran microbial dolomite in the Sichuan Basin is a good source rock showing vast resource potential.The hydrocarbon expulsion threshold is determined to be vitrinite reflectance at 0.92%.The hydrocarbon expulsion intensities in the geologic history is high with maximum of 1.6×10^(7)t/km^(2).The Ediacaran microbial dolomite expelled approximately 1.008×10^(12)t of hydrocarbons,and the recoverable resource was 1.5×10^(12)m^(3).The region can be categorized into areasⅠ,Ⅱ,Ⅲ,andⅣ,in decreasing order of hydrocarbon expulsion intensity.Areas with a higher hydrocarbon expulsion intensity have a lower drilling risk and should be prioritized for exploration in the orderⅠ>Ⅱ>Ⅲ>Ⅳ.Two areas,northern and central parts of Ediacaran in the Sichuan Basin,were selected as prospects which had the drilling priority in the future gas exploration.The production data of 55 drilled wells verified the high reliability of this method.This model in this study does not require low-maturity samples and can be used for evaluating high-maturity marine source rocks,which has broad applicability in deep basins worldwide.
基金supported by the National Natural Science Foundation of China(U6212205)the Chinese Postdoctoral Science Foundation(2014M550984)
文摘Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3xs) in the Western Sichuan Basin (WSD) are currently regarded as the most prolific emerging unconventional gas plays in China. This study conducted a conventional evaluation of T3x5 source rocks in the WSD, and investigated their hydrocarbon generation and expulsion characteristics, including intensity, efficiency and amount. The results show that, the T3x5 source rocks are thick (generally 〉200 m), and have a high total organic content (TOC), ranging from 2.5 to 4.5 wt%. It is thus indivative of a great hydrocarbon generation potential when they underwent high thermal evolution (Ro〉1.2%) in the area. In addition, an improved method of hydrocarbon generation potential is applied, indicating that the source rocks reached a hydrocarbon expulsion threshold with vitrinite reflectance (Ro) reaching 1.06%. and that the comprehensive hydrocarbon expulsion efficiency is about 60%. The amount of hydrocarbon generation and expulsion from Tax5 source rocks is 3.14x10^10 t and 1.86x10^10 t, respectively, with a residual amount of 1.28x10^10t within them. Continuous-type tight-sand gas is predicted to have developed in the Jurassic in the Chengdu Sag of the WSD because of the good source-reservoir configuration; the Jurassic sandstone reservoirs are tight, and the gas expelled from the T3xs source rocks migrates for very short distances vertically and horizontally. The amount of gas accumulation in the Jurassic reservoirs derived from T3x5 source rocks is up to 9.3x10s t. Geological resources of shale gas are up to 1.05x10TM t. Small differences between the amounts calculated by the volumetric method and those obtained by hydrocarbon generation potential method may be due to other gas accumulations present within interbedded sands associated with gas shales.
基金Supported by the National Natural Science Foundation of China(U22B6004).
文摘The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion efficiency and roof/floor sealing conditions of the Chang 7_(3) shale,and evaluates the major enrichment type of shale oil in this interval.The average organic matter transformation ratio of the Chang 7_(3) shale is about 45%;in other words,more than 50%of the organic matters have not transformed to hydrocarbons,and the lower the maturity,the greater the proportion of untransformed organic matters.The cumulative hydrocarbon expulsion efficiency of the transformed hydrocarbon is 27.5% on average,and the total proportion of untransformed organic matters plus retained hydrocarbons is greater than 70%.The relative hydrocarbon expulsion efficiency of the Chang 7_(3) shale is 60%on average,that is,about 40% of hydrocarbons retain in the shale.The Chang 7_(3) shale corresponds to Chang 7_(1+2) and Chang 8 sandstones as the roof and floor,respectively,and is further overlaid by Chang 6 shale,where extensive low porosity and low permeability–tight oil reservoirs have formed in the parts with relatively good porosity and permeability.Moreover,the Chang 7_(3) shale is tested to be in a negative pressure system(the pressure coefficient of 0.80–0.85).Therefore,the roof/floor sealing conditions of the Chang 7_(3) shale are poor.The retained hydrocarbons appear mostly in absorbed status,with low mobility.It is concluded that the medium–high mature shale oil is not the major enrichment type of shale oil in the Chang 7_(3) shale,but there may be enrichment opportunity for shale oil with good mobility in the areas where the sealing conditions are good without faults and fractures and oil reservoirs are formed off Chang 7_(1+2),Chang 6 and Chang 8.Furthermore,low–medium mature shale oil is believed to have great potential and is the major enrichment type of shale oil in the Chang 7_(3) shale.It is recommended to prepare relevant in-situ conversion technologies by pilot test and figure out the resource availability and distribution.
基金This study is financially supported by the Joint Fund of the National Natural Science Foundation of China under grant number U19B6003-02-04the Science Foundation of China University of Petroleum,Beijing,under grant number 2462020BJRC005 and 2462022YXZZ007+1 种基金the National Natural Science Foundation of China under grant number 42102145the China National Petroleum Corporation's"14th Five-Year Plan"major scientific projecs under grant number 2021DJ0101.
文摘To thoroughly understand the dynamic mechanism of hydrocarbon expulsion from deep source rocks,in this study,five types of hydrocarbon expulsion dynamics(thermal expansion,hydrocarbon diffusion,compaction,product volume expansion,and capillary pressure difference(CPD))are studied.A model is proposed herein to evaluate the relative contribution of different dynamics for hydrocarbon expulsion using the principle of mass balance,and the model has been applied to the Cambrian source rocks in the Tarim Basin.The evaluation results show that during hydrocarbon expulsion from the source rocks,the relative contribution of CPD is the largest(>50%),followed by compaction(10%-40%),product volume expansion(5%-30%),and thermal expansion(2%-20%).The relative contribution of diffusion to hydrocarbon expulsion is minimal(<10%).These results demonstrate that CPD plays an important role in the hydrocarbon expulsion process of deep source rocks.The hydrocarbon expulsion process of source rocks can be categorized into three stages based on the contribution of different dynamics to the process:the first stage is dominated by compaction and diffusion to expel hydrocarbons,the second stage is dominated by product volume expansion and CPD,and the third stage is dominated by product volume expansion and CPD.This research offers new insights into hydrocarbon exploration in tight oil and gas reservoirs.
基金supported by the Important National Science&Technology Specific Projects(Grant No.2011ZX05006-003/004)
文摘The hydrocarbon charge history of the Paleogene in the northern Dongpu Depression was analyzed in detail based on a comprehensive analysis of the generation and expulsion history of the major hydrocarbon source rocks, fluorescence microscopic features and fluid inclusion petrography. There were two main stages of hydrocarbon generation and expulsion of oil from the major hydrocarbon source rocks. The first stage was the main hydrocarbon expulsion stage. The fluorescence microscopic features also indicated two stages of hydrocarbon accumulation. Carbonaceous bitumen, asphaltene bitumen and colloidal bitumen reflected an early hydrocarbon charge, whereas the oil bitumen reflected a second hydrocarbon charge. Hydrocarbon inclusions also indicate two distinct charges according to the diagenetic evolution sequence, inclusion petrography features combined with the homogenization temperature and reservoir burial history analysis. According to these comprehensive analysis results, the hydrocarbon charge history of the Paleogene reservoir in the northern Dongpu Depression was divided into two phases. The first phase was from the late Dongying depositional period of the Oligocene to the early uplift stages of the late Paleogene. The second phase was from the late Minghuazhen period of the Pliocene to the Quaternary. Reservoirs formed during the first period were widely distributed covering the entire area. In contrast,reservoirs formed during the second period were mainly distributed near the hydrocarbon generation sags. Vertically, it was characterized by a single phase in the upper layers and two phases in the lower layers of the Paleogene.
文摘Based on the theory of formation dynamics of oil/gas pools, the Dongying sag can be divided into three dynamic systems regarding the accumulation of oil and gas: the superpressure closed system, the semi-closed system and the normal pressure open system. Based on the analysis of genesis of superpressure in the superpressure closed system and the rule of hydrocarbon expulsion, it is found that hydrocarbon generation is related to superpressure, which is the main driving factor of hydrocarbon migration. Micro fractures formed by superpressure are the main channels for hydrocarbon migration. There are three dynamic patterns for hydrocarbon expulsion: free water drainage, hydrocarbon accumulation and drainage through micro fissures. In the superpressure closed system, the oil-driving-water process and oil/gas accumulation were completed in lithologic traps by way of such two dynamic patterns as episodic evolution of superpressure systems and episodic pressure release of faults. The oil-bearing capacity of lithologic traps is intimately related to reservoir-forming dynamic force. Quantitative evaluation of dynamic conditions for pool formation can effectively predict the oil-bearing capability of traps.
文摘The Lynedoch field is located on the west flank of the Calder Graben in the north-eastern Bonaparte Basin, Australia. The data from the wells Lynedoch 1 and Lynedoch 2 and Seismic Line N11809 were used to reconstruct the burial and thermal histories and evaluate the hydrocarbon generated and expelled from the Jurassic to Early Cretaceous source rocks of the study area. Basin Mod 1-D and 2-D softwares were used for modeling. The Upper Jurassic Cleia (Lower Frigate) and Lower Cretaceous Echuca Shoals formations source rocks in the well Lynedoch 1 were a fair-to-good source richness with poor hydrocarbon generating potential, showing kerogen type III and gas prone. The Middle Jurassic Plover Formation source rock in the well Lynedoch 2 was a good organic matter richness with poor hydrocarbon generative potential, the late Middle Jurassic (Callovian) Elang Formation source rock in the same well was a fair source rock with poor hydrocarbon generation potential, and the Lower Cretaceous Echuca Shoals Formation source rock in the same well was a fair-to-very good organic richness with poor-to-fair hydrocarbon generating potential, gas prone with kerogen type III, and reaching wet gas window at present day. These previous formations of the both wells generated oil at the Late Cretaceous and gas at the Early Neogene. But, only Echuca Shoals Formation source rock in the well Lynedoch 2 was able to expelled hydrocarbon at the Middle Paleogene and continued up to present day. This Formation represents fair to slightly good potential source rock in the Lynedoch field.
基金Supported by the National Natural Science Foundation(42202133,42072174,42130803,41872148)PetroChina Science and Technology Innovation Fund(2023DQ02-0106)PetroChina Basic Technology Project(2021DJ0101).
文摘Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale.
文摘Research on effective source rocks directly affects the accuracy of identifying hydrocarbon resources, and indirectly affects the exploration decisions in petroliferous basins. Although the previous evaluation methods of effective source rocks vary relatively widely, a complete quantitative evaluation approach has not yet been developed. For that reason, we redefined the concept of effective source rocks based on the existing research results. Surrounding this definition, and guided by the hydrocarbon expulsion theory, the quantitative model called "two stages and three steps" method is established to predict effective source rocks. Its application in the Bozhong Depression indicates that among the four sets source rocks in the Bozhong Depression, the Member 3 of the Shahejie Formation (Es 3 ) has the largest effective source rock thickness, and the Member 1 Member 2 of the Shahejie Formation (Es 1+2 ) is the second largest .The effective part of dark mudstone is only 30%-80% of the total volume and with the increase of buried depth and improvement of quality, the effective part increases. Comprehensive analysis indicates that the "two stages and three steps" method is a practical technique for effective source rock prediction.
基金Supported by the National Natural Science Foundation Project(42090020,42090025)Strategic Research of Oil and Gas Development Major Project of Ministry of Science and TechnologyPetroChina Scientific Research and Technological Development Project(2019E2601).
文摘Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evolution,shale oil occurrence,and pore/fracture evolution mechanism.In conjunction with a substantial amount of oil testing and production data,the Gulong shale oil enrichment layers are evaluated and the production behaviors and decline law are analyzed.The results are drawn in four aspects.First,the Gulong shales are in the stage of extensive hydrocarbon expulsion when R_(0) is 1.0%-1.2%,with the peak hydrocarbon expulsion efficiency of 49.5%approximately.In the low-medium maturity stage,shale oil migrates from kerogen to rocks and organic pores/fractures.In the medium-high maturity stage,shale oil transforms from adsorbed state to free state.Second,the clay mineral intergranular pores/fractures,dissolution pores,and organic pores make up the majority of the pore structure.During the transformation,clay minerals undergo significant intergranular pore/fracture development between the minerals such as illite and illite/smectite mixed layer.A network of pores/fractures is formed by organic matter cracking.Third,free hydrocarbon content,effective porosity,total porosity,and brittle mineral content are the core indicators for the evaluation of shale oil enrichment layers.Class-I layers are defined as free hydrocarbon content equal or greater than 6.0 mg/g,effective porosity equal or greater than 3.5%,total porosity equal or greater than 8.0%,and brittle mineral content equal or greater than 50%.It is believed that the favourable oil layers are Q2-Q3 and Q8-Q9.Fourth,the horizontal wells in the core area of the light oil zone exhibit a high cumulative production in the first year,and present a hyperbolic production decline pattern,with the decline index of 0.85-0.95,the first-year decline rate of 14.5%-26.5%,and the single-well estimated ultimate recovery(EUR)greater than 2.0×10^(4)t.In practical exploration and production,more efforts will be devoted to the clarification of hydrocarbon generation and expulsion mechanisms,accurate testing of porosity and hydrocarbon content/phase of shale under formation conditions,precise delineation of the boundary of enrichment area,relationship between mechanical properties and stimulated reservoir volume,and enhanced oil recovery,in order to improve the EUR and achieve a large-scale,efficient development of shale oil.
基金This study is funded by the National major science&technology special project entitled Critical Technologies for Fine Exploration in the Bohai Bay Basin(No.2011ZX0500).
文摘With increased exploration in the faulted basins of eastern China,petroleum exploration in this region has been challenged by unclear remaining petroleum resources distribution,complex reservoir and hydrocarbon enrichment patterns,and lacking of suitable exploration techniques.Aiming at resolving these problems,studies on source rocks,reservoirs,hydrocarbon accumulation and geophysical prospection were carried out by laboratory analysis,reservoir anatomy,and seismic analysis.A highlyefficient hydrocarbon generation/expulsion model of source rocks in saline environment was established,which aided in the discovery of a new set of source rocks in the Jiyang Depression.This study also reveals the formation process of high-quality reservoir by alternating acid and alkaline fluids during deposition and diagenesis,and pattern of secondary pores development in deep clastic rocks.Through the fine anatomy of the oil reservoirs,an orderly distribution pattern of the oil reservoirs is established,and the potential exploration targets in the undrilled area are identified.In addition,single-point highdensity seismic acquisition and high-resolution imaging technologies are developed,enabling fine and efficient exploration in areas with high exploration maturity.The research result plays a leading and demonstrative role in the fine and efficient exploration of faulted basins in eastern China.