In the present paper, we carried out a theoretical study of dielectric barrier discharge(DBD)filled with pure methane gas. The homogeneous discharge model used in this work includes a plasma chemistry unit, an elect...In the present paper, we carried out a theoretical study of dielectric barrier discharge(DBD)filled with pure methane gas. The homogeneous discharge model used in this work includes a plasma chemistry unit, an electrical circuit, and the Boltzmann equation. The model was applied to the case of a sinusoidal voltage at a period frequency of 50 kHz and under a gas pressure of 600 Torr. We investigated the temporal variation of electrical and kinetic discharge parameters such as plasma and dielectric voltages, the discharge current density, electric field, deposited power density, and the species concentration. We also checked the physical model validity by comparing its results with experimental work. According to the results discussed herein, the dielectric capacitance is the parameter that has the greatest effect on the methane conversion and H_2/CH_4 ratio. This work enriches the knowledge for the improvement of DBD for CH_4 conversion and hydrogen production.展开更多
Lacustrine carbonate reservoirs in the gentle slope(ramp)area of Qikou Sag are highly heterogeneous.Some researches about characteristics and distribution of these high quality reservoirs are less.In this study,an int...Lacustrine carbonate reservoirs in the gentle slope(ramp)area of Qikou Sag are highly heterogeneous.Some researches about characteristics and distribution of these high quality reservoirs are less.In this study,an integrated investigation was conducted on the high-quality lacustrine carbonate reservoirs in the ramp area of Qikou Sag based on data of thin section examination,lithological log response,testing results,and mercury-injection capillary pressure measurement.In the study area,grainstone reservoirs in the lower 1st member of the Shahejie Formation are high-quality reservoirs characterized by high-medium porosity,moderate permeability,low displacement pressure,and relative large pore throat.Lithologically,these reservoirs are mainly composed of bioclastic and oolitic sparite,and reservoir storage space consists of secondary intergranular dissolved pores and fractures.Hydrodynamic conditions generally control distribution of these reservoirs,as limestone grains filled intergranularly with sparry calcite cement are usually formed under strong hydrodynamic conditions.Sparry calcite cemented limestone is subject to late dissolution with abundant soluble substances,which is one of the direct causes for the well developed secondary dissolved pores.Oolitic bank and bioclastic bank are under high-energy hydrodynamic conditions with the best reservoir petrophysical properties.Rims of beach bars are usually in an intermittently-turbulent highly-hydrodynamic environment with medium reservoir petrophysical properties.Lake bays and supratidal zones are under low-energy tranquil hydrodynamic conditions,with poor reservoir petrophysical properties.During late diagenesis,large quantities of organic acid and slightly acidic water were released from surrounding shale and migrated along the top unconformity of the 3rd member of the Shahejie Formation,resulting in development of numerous secondary dissolved pores in carbonate reservoirs,which is the main cause of high-quality reservoir formation in the sag.Additionally,early charge of hydrocarbons restrained occurrence of authigenic minerals and metasomatism of calcite,and thus promoted excellent preservation of dissolved pores.展开更多
文摘In the present paper, we carried out a theoretical study of dielectric barrier discharge(DBD)filled with pure methane gas. The homogeneous discharge model used in this work includes a plasma chemistry unit, an electrical circuit, and the Boltzmann equation. The model was applied to the case of a sinusoidal voltage at a period frequency of 50 kHz and under a gas pressure of 600 Torr. We investigated the temporal variation of electrical and kinetic discharge parameters such as plasma and dielectric voltages, the discharge current density, electric field, deposited power density, and the species concentration. We also checked the physical model validity by comparing its results with experimental work. According to the results discussed herein, the dielectric capacitance is the parameter that has the greatest effect on the methane conversion and H_2/CH_4 ratio. This work enriches the knowledge for the improvement of DBD for CH_4 conversion and hydrogen production.
基金This work was supported by National Science and Technology Major Project of China(Grant No.2009ZX05009-002).
文摘Lacustrine carbonate reservoirs in the gentle slope(ramp)area of Qikou Sag are highly heterogeneous.Some researches about characteristics and distribution of these high quality reservoirs are less.In this study,an integrated investigation was conducted on the high-quality lacustrine carbonate reservoirs in the ramp area of Qikou Sag based on data of thin section examination,lithological log response,testing results,and mercury-injection capillary pressure measurement.In the study area,grainstone reservoirs in the lower 1st member of the Shahejie Formation are high-quality reservoirs characterized by high-medium porosity,moderate permeability,low displacement pressure,and relative large pore throat.Lithologically,these reservoirs are mainly composed of bioclastic and oolitic sparite,and reservoir storage space consists of secondary intergranular dissolved pores and fractures.Hydrodynamic conditions generally control distribution of these reservoirs,as limestone grains filled intergranularly with sparry calcite cement are usually formed under strong hydrodynamic conditions.Sparry calcite cemented limestone is subject to late dissolution with abundant soluble substances,which is one of the direct causes for the well developed secondary dissolved pores.Oolitic bank and bioclastic bank are under high-energy hydrodynamic conditions with the best reservoir petrophysical properties.Rims of beach bars are usually in an intermittently-turbulent highly-hydrodynamic environment with medium reservoir petrophysical properties.Lake bays and supratidal zones are under low-energy tranquil hydrodynamic conditions,with poor reservoir petrophysical properties.During late diagenesis,large quantities of organic acid and slightly acidic water were released from surrounding shale and migrated along the top unconformity of the 3rd member of the Shahejie Formation,resulting in development of numerous secondary dissolved pores in carbonate reservoirs,which is the main cause of high-quality reservoir formation in the sag.Additionally,early charge of hydrocarbons restrained occurrence of authigenic minerals and metasomatism of calcite,and thus promoted excellent preservation of dissolved pores.