Objective The distribution characteristics and formation mechanism of rearranged hopanes in hydrocarbon source rocks are affected by various geological conditions.Among these geological conditions,thermal action has a...Objective The distribution characteristics and formation mechanism of rearranged hopanes in hydrocarbon source rocks are affected by various geological conditions.Among these geological conditions,thermal action has an important influence on the formation of rearranged hopanes,which has been however little documented previously.展开更多
The Songliao Basin, one of the biggest continental petroliferous basins in eastern China, is a Mesozoic- Cenozoic fault-depressed and fault-subsided basin developed on the Hercynian fold basement. Generally, rearrange...The Songliao Basin, one of the biggest continental petroliferous basins in eastern China, is a Mesozoic- Cenozoic fault-depressed and fault-subsided basin developed on the Hercynian fold basement. Generally, rearranged hopanes are considered to be formed by clay- mediated acidic catalysis under oxic or suboxic environment, whereas high abundance of rearranged hopanes were found in hydrocarbon source rocks and crude oils that are derived from salty environment in the Songliao Basin. This phenomenon rarely happens all over the world.展开更多
Based on the data of 44 samples of hydrocarbon source rocks in Nanpu No.3 buffed-hill region, the kerogen type is judged through the pyrolysis and microscopic identification. At the same time, organic matter maturity ...Based on the data of 44 samples of hydrocarbon source rocks in Nanpu No.3 buffed-hill region, the kerogen type is judged through the pyrolysis and microscopic identification. At the same time, organic matter maturity and hydrocarbon generation threshold are studied by using vitrinite reflectance, pyrolysis yield and hydrocarbon abundance. Meanwhile the hydrocarbon expulsion threshold is calculated. And the characteristics of organic hydrocarbon generation and expulsion are preliminarily revealed and evaluated. The result shows that the No.3 buffed-hill region has abundant hydrocarbon source rocks with high content of organic carbon. And the primary types of kerogen are II, and lI 2. The hydrocarbon source rocks which passed biochemistry, thermolysis and thermal cracking have developed into the mature-postmature phase of different extents. And plenty of oil and gas were expelled out. It is believed the depth of oil-generating window is 3 600 m and the depth of hydro- carbon-expulsion threshold is 4 100 m. The comprehensive analysis indicates that Nanpu No.3 burried-hill region has a certain condition to generate hydrocarbon which is very promising in oil exploration and thus can become an important exploration and development target next.展开更多
The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrati...The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrating there is a great potential for natural gas exploration in oil-type basins.The ethane isotope of the Bozhong 19-6 condensate gas is heavy,showing the characteristics of partial humic gas.In this paper,aimed at the source rocks of the Bozhong 19-6 gas field in the Bohai Bay Basin,the characteristics of the source rocks in the Bozhong 19-6 structural belt were clarified and the reason are explained from impact of microorganism degradation on hydrocarbon generation of source rocks why the condensate oil and gas had heavy carbon isotope and why it showed partial humic characteristics was explored based on the research of parent materials.The following conclusions were obtained:The paleontology of the Bozhong 19-6 structural belt and its surrounding sub-sags is dominated by higher plants,such as angiosperm and gymnosperm.During the formation of source rocks,under the intensive transformation of microorganism,the original sedimentary organic matter such as higher plants was degraded and transformed by defunctionalization.Especially,the transformation of anaerobic microorganisms on source rocks causes the degradation and defunctionalization of a large number of humic products such as higher plants and the increase of hydrogen content.The degradation and transformation of microorganism don't transform the terrestrial humic organic matter into newly formed“sapropel”hydrocarbons,the source rocks are mixed partial humic source rocks.As a result,hydrogen content incrased and the quality of source rocks was improved,forming the partial humic source rocks dominated by humic amorphous bodies.The partial humic source rocks are the main source rocks in the Bozhong 19-6 gas field,and it is also the internal reason why the isotope of natural gas is heavy.展开更多
According to the study on the oil-gas source rocks in China for ten years,in connection with the microscopic, submicroscopic levels, the authors used the microscope photometry together with transmission electronic mic...According to the study on the oil-gas source rocks in China for ten years,in connection with the microscopic, submicroscopic levels, the authors used the microscope photometry together with transmission electronic microscopy, scanning electronic microscopy and proposed a new classification for sedimentary organic matters.展开更多
In a thermal simulation experiment of gold tubes of closed-system, calculating with the KINETICS and GOR-ISOTOPE KINETICS software, kinetic parameters of gas generation and methane carbon isotopic fractionation from T...In a thermal simulation experiment of gold tubes of closed-system, calculating with the KINETICS and GOR-ISOTOPE KINETICS software, kinetic parameters of gas generation and methane carbon isotopic fractionation from Triassic-Jurassic hydrocarbon source rocks in the Kuqa depression of Tarim Basin are obtained. The activation energies of methane generated from Jurassic coal, Jurassic mudstone and Triassic mudstone in the Kuqa Depression are 197-268 kJ/mol, 180-260 kJ/mol and 214-289 kJ/mol, respectively, and their frequency factors are 5.265×10^13 s^-1, 9.761×10^11 s^-1 and 2.270×10^14 s^-1. This reflects their differences of hydrocarbon generation behaviors. The kinetic parameters of methane carbon isotopic fractionation are also different in Jurassic coal, Jurassic mudstone and Triassic mudstone, whose average activation energies are 228 kJ/mol, 205 kJ/mol and 231 kJ/mol, respectively. Combined with the geological background, the origin of natural gas in the Yinan-2 gas pool is discussed, and an accumulation model of natural gas is thus established. The Yinan- 2 gas is primarily derived from Jurassic coal-bearing source rocks in the Yangxia Sag. Main gas accumulation time is 5-0 Ma and the corresponding Ro is in the range from 1.25 %-1.95 %. The loss rate of natural gas is 25 %-30 %.展开更多
A series of biomarkers were identified in the aliphafic and aromatic fractions of the extracts from Late Permian Dalong (大隆) and Wujiaping (吴家坪) formations in Shangsi (上寺) Section, Northeast Sichuan (四...A series of biomarkers were identified in the aliphafic and aromatic fractions of the extracts from Late Permian Dalong (大隆) and Wujiaping (吴家坪) formations in Shangsi (上寺) Section, Northeast Sichuan (四川), South China, on the basis of the analysis of gas chromatography-mass spectrometry (GC-MC). The dominance of lower-molecular-weight n-alkanes throughout the profile suggests the dominant contribution of algae and bacteria to the organics preserved in the marine section. Wujiaping Formation is characterized by the elevated contribution from algae as well as other photoautotrophs such as photosynthetic bacteria as shown by the molecular ratios of hopanes to steranes or tricyclic terpanes as well as the ratio of pristane (Pr) and phytane (Ph) to C17 and C18 n-alkanes. This is in accord with the data from the microscopic measurement on the calcareous algae. In contrast, Dalong Formation is featured by enhanced contribution from bacteria and probably terrestrial organics indicated by the enhanced C24 tetracyclic terpanes relative to tricyclic terpanes. The two formations also show a distinct discrimination in sedimentary environmental conditions including redox condition and salinity. The anoxic condition was only found in the middle of the Dalong Formation as shown by the ratios of Pr/Ph and dibenzothiophene to phenanthrene, consistent with the reported data of Mo and U. An enhanced salinity indicated by the homohopane index is observed at the shallow Wujiaping Formation. On the basis of the composition of primary productivity and the redox condition, Dalong Formation is proposed, herein, to be potential hydrocarbon source rocks in the study site. It is notable that the topmost end-Permian is characterized by a large perturbauce in both the redox condition and salinity, with oxic conditions being frequently interrupted by short-term anoxia, likely showing a causal relationship with the episodic biotic crisis across the Permian-Triassic boundary.展开更多
The ancient structure characteristic,correlation of the oil and the hydrocarbon source rock characteristics,hydrocarbon migration trace,types and conditions of traps,migration passages and characteristic of hydrocarbo...The ancient structure characteristic,correlation of the oil and the hydrocarbon source rock characteristics,hydrocarbon migration trace,types and conditions of traps,migration passages and characteristic of hydrocarbon accumulation are researched in this paper.It is shown through the analysis that two main large tectonic activities after the Early Hercynian orogeny resulted in different tectonic patterns in the study area.Two main hydrocarbon infills occurred in the Donghetang Formation,the first occurred in the Early Hercynian resulting in the ancient hydrocarbon accumulation in the northern Tahe,the second infill was a large amount that occurred in places beneficial for hydrocarbon accumulation,such as structural traps and structural-stratigraphic traps formed in the Early Himalayan orogeny after migration along the faults through source rocks and other passages.Before the earlier period of the Himalayan orogeny,the petroleum mainly migrated to the north,whereas petroleum migrated to the south and southeast because of the structural reverse in the Himalayan orogeny,so the middle and later period of the Himalayan orogeny is the key period for hydrocarbon accumulation.The model of"oil generation formed early,hydrocarbon accumulation controlled by the faults through source rocks and structures formed late"is proposed.It is pointed out that the south of the research area is currently the beneficial district for hydrocarbon accumulation, which provides the basis for future petroleum exploration.展开更多
The marine primary producers assimilate the atmospheric CO2 to form the organic carbon in surface water. The organic carbon then settles down through the water column and is removed from the oceans by final preservati...The marine primary producers assimilate the atmospheric CO2 to form the organic carbon in surface water. The organic carbon then settles down through the water column and is removed from the oceans by final preservation in sediments in the form of petroleum or nature gases. The reconstruction of paleoproductivity will thus improve our understanding of the biological processes in the formation of fossil energy resource and help to locate new sites for future exploration. In this study, biorelated elements P, Cd, Al, Ba, as well as redox sensitive element Mo, were analyzed in the 448 rock samples collected from Permian strata at the Shangsi (上寺) Section, Guangyuan (广元), Northeast Sichuan (四川) in China. On the basis of the Ti content, the nondetrital contents of P, Ca, and Al, denoted as Pxs, Cdxs, and Alxs, were calculated and found to coincide with the TOC content throughout the whole section, with some enrichment intervals being found in the middle part of Chihsia Formation, topmost Maokou (茅口) Formation, and Dalong (大隆) Formation. This suggests that the biorelated elements could he used as proxies for the paleoproductivity here in this section. Baxs, a paleoproductivity indicator widely used in the paleoceanography, shows insignificant correlation with TOC, Pxs, Cdxs, and Alxs, probably arising from the loss of biological barium in anoxic conditions. Compiled with the data of TOC content and Pxs, Cdxs, and Alxs, three episodes of enhanced paleoproductivity were identified in Permian strata including the middle part of Chihsia Formation, topmost Maokou Formation, and Dalong Formation.展开更多
The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effe...The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effective source rock, reservoir bed types and source-reservoir-seal assemblages, petroleum system theory has been used to classify the petroleum system of the Sufyan Depression. Vertically, the Sufyan Depression consists of two subsystems. One is an Abu Gabra subsystem as a self generating, accumulating and sealing assemblage. The other subsystem is composed of an Abu Gabra source rock, Bentiu channel sandstone reservoir and Darfur group shale seal, which is a prolific assemblage in this area. Laterally, the Sufyan Depression is divided into eastern and western parts with separate hydrocarbon generation centers more than 10 000 m deep. The potential of the petroleum system is tremendous. Recently, there has been a great breakthrough in exploration. The Sufyan C-1 well drilled in the central structural belt obtained high-yielding oil flow exceeding 100 tons per day and controlled geologic reserves of tens of millions of tons. The total resource potential of the Sufyan Depression is considerable. The central structural belt is most favorable as an exploration and development prospect.展开更多
Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which...Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which focuses on difficulties in prediction of hydrocarbon source rocks in basins or sags with low exploration degree and insufficient hydrocarbon source rock indicators, taking the Wenchang Formation of northern Zhu I Depression, Pearl River Mouth Basin as an example, proposed a hypothesis of “finding lakes and hydrocarbon source rocks”. Detailed steps include, first, determination of the lacustrine basin boundary according to analysis of seismic foreset facies, determination of the depositional area based on the compilation of strata residual thickness maps, determination of the lacustrine basin shape according to deciphering slope break belt system, determination of the fluctuation of paleo-water depth according to biogeochemical indicators of mature exploration areas, determination of the lacustrine basin scale based on analyses of tectonics intensity and accommodation space, which prove the existence of the lacustrine basin and identify the range of semi deep-deep lake;second, further analyses of tectonopalaeogeomorphology, paleo-provenance,palaeoclimate and paleo-water depth to reconstruct the geologic background of the original basin and semideep-deep lacustrine facies, to determine the distribution of semi-deep/deep lacustrine sediments in combination with studies of logging facies, core facies, seismic facies and sedimentary facies, and to rank the sags’ potential of developing hydrocarbon source rocks from controlling factors of source-to-sink system development;third, on the basis of regional sedimentary facies analysis, through identification and assessment of seismic facies types of semi-deep/deep lacustrine basins in mature areas, establishing “hydrocarbon source rock facies” in mature areas to instruct the identification and depicting of hydrocarbon source rocks in semideep/deep lacustrine basins with low exploration degree;fourth, through systematical summary of hydrocarbon-rich geological factors and lower limit index of hydrocarbon formation of the sags already revealed by drilling wells(e.g., sag area, tectonic subsidence amount, accommodation space, provenance characteristic, mudstone thickness, water body environment, sedimentary facies types of hydrocarbon source rocks), in correlation with corresponding indexes of sags with low exploration degree, then the evaluation and sorting of high-quality source rocks in areas with sparsely distributed or no drilling wells can be conducted with multi-factors and multiple dimensions. It is concluded that LF22 sag, HZ10 sag and HZ8 sag are II-order hydrocarbon rich sags;whereas HZS, HZ11 and HZ24 are the III-order hydrocarbon-generating sags.展开更多
Minerals might act as important sorbents of sedimentary organic matter and reduce biodegradation, which favors the formation of hydrocarbon source rocks in the earth's history. Since most organic matter is degraded d...Minerals might act as important sorbents of sedimentary organic matter and reduce biodegradation, which favors the formation of hydrocarbon source rocks in the earth's history. Since most organic matter is degraded during the sinking process, at ambient temperature, it is important to investigate the adsorption capacity of different minerals during this process, to assess the organic loss from primary productivity to sedimentary organic matter. In this study, montmorillonite and calcite have been selected to study the impact of different minerals on the release, adsorption, and deposition of cyanobacterial (Synechococcus elonpata) fatty acids (FAs) at ambient temperature. Gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) have been utilized to detect the variation in fatty acids. Primary results suggest that minerals have a different impact on dissolved organic matter. Montmorillonite can specifically enhance the release of fatty acids from cyanobacterial cells by lowering the pH values of the solution. The adsorption of the dissolved organic matter by montmoriilonite will also be enhanced under a lower pH value. Conjunction of fatty acids with montmoriilonite to form a complex will favor the sinking and preservation of these organics. Selective adsorption is observed among fatty acids with different carbon numbers. In contrast, calcite does not show any impact on the release and adsorption of organic matter even though it is reportedly capable of acting as a catalyst during the transformation of organic matter at high temperature. The primary data bridge a link between primary productivity and sedimentary organic matter, suggesting the relative importance of claystones in the formation of hydrocarbon source rocks in the earth's history.展开更多
The molecular organic compounds have been identified by gas chromatography (GC) and GC-mass spectrometry (GC-MS) from Mesoproterozoic rocks in the Xuaniong (宣龙) depression in North China. The main saturated co...The molecular organic compounds have been identified by gas chromatography (GC) and GC-mass spectrometry (GC-MS) from Mesoproterozoic rocks in the Xuaniong (宣龙) depression in North China. The main saturated compounds are n-alkanes, monomethylalkanes, n-alkylcyclohexanes, acyclic isoprenoids, and hopanes. The dominant lower-molecular-weight n-alkanes are indicative of the main contribution of microorganisms, in particular, the chemosynthetic bacteria. The presence of abundant monomethylalkanes (mid- and end-branched) and the long chained (〉C20) acyclic isoprenoids indicates the existence of abundant bacteria and/or archaea in ancient oceans. The low abundance of pristane and phytane is suggestive of the relatively low abundance of photosynthetic autotrophs in comparison with chemosynthetic bacteria in the Mesoproterozoic oceans in North China. The sedimentary environmental condition is suboxic/anoxic, as indicated by the low value of the Pr/Ph ratio as well as the presence of abundant sulfur-bearing organic compounds, consistent with the other geochemical data in North China and elsewhere in the world. Both the composition of the primary producers and the sedimentary environmental conditions are favorable for the formation of hydrocarbon source rocks.展开更多
The change of the primary productivity across the Permian-Triassic boundary (PTB) remains controversial. In this study, records from two deep-water sections in South China (Xiakou and Xinmin sections) show the pri...The change of the primary productivity across the Permian-Triassic boundary (PTB) remains controversial. In this study, records from two deep-water sections in South China (Xiakou and Xinmin sections) show the primary productivity decreased gradually from the latest Permian to the earliest Triassic, and five evolutionary stages Increase-Decrease-Recovery-Recession- Stagnation) can be observed from Clarkina changxingensis-C, deflecta to Hindeodus parvus-lsarcicella isarcica zones. Pri- mary productivity decreased abruptly from the base of C. meishanensis zone. Besides, for adjusting to the deterioration of the oceanic environment, the primary producers in the oceanic surface had changed to acritarch and cyanobacteria, which were more tolerant of stressful environment. Then the producers were under huge stagnation in the H. parvus-L isarcica zone. The values of quantitative calculation of the primary productivity from the black rock series in the Dalong Formation were very high, corresponding to that of an upwelling area in modern ocean, which shows that the strata of the Dalong Formation in the study region are potential hydrocarbon source-rocks. This result may come from the fact that South China craton was located at the equatorial upwelling area during the Permian-Triassic transitions. But organic matter contents were different in various sections because they could be affected by redox conditions and diagenesis process after burial.展开更多
Petroleum system theory has been used to study characteristics of the Fula depression in the Central African fault zone.In this system,deep lacustrine facies mudstone in the Abu Gabra For-mation of the Lower Cretaceou...Petroleum system theory has been used to study characteristics of the Fula depression in the Central African fault zone.In this system,deep lacustrine facies mudstone in the Abu Gabra For-mation of the Lower Cretaceous is a very good source rock,thick deltaic facies sandstone of the Abu Gabra Formation and fluvial facies sandstone of the Bentiu Formation are good reservoir beds,and the mudstone in the Upper Cretaceous Darfur Group is the regional cap rock.The oil search mode and fault block trap seal-off conditions are considered here for passive rift basins.Particularly with respect to oil source rock distribution,successive development of reverse fault block and faulted anticlinal traps on low relief structures could have accumulated hydrocarbons because of lateral sealing by down-thrown mudstone along the up-dipping reservoir beds.At present,discoveries in this system are all large-duty oil fields.In 2009,proved reserves exceeded 2×108 t,and about 3×106 t annual throughput of crude oil was obtained.Risk exploration of the Fula depression is of short cycle and high benefit,which will be of great help for exploration in the Muglad basin.展开更多
基金supported by the National Natural Science Foundation of China (grant No.41272170)the National Oil and Gas Major Project (grant No.2016ZX05007-001)
文摘Objective The distribution characteristics and formation mechanism of rearranged hopanes in hydrocarbon source rocks are affected by various geological conditions.Among these geological conditions,thermal action has an important influence on the formation of rearranged hopanes,which has been however little documented previously.
基金supported by the National Natural Science Foundation of China(grant No.41272170)
文摘The Songliao Basin, one of the biggest continental petroliferous basins in eastern China, is a Mesozoic- Cenozoic fault-depressed and fault-subsided basin developed on the Hercynian fold basement. Generally, rearranged hopanes are considered to be formed by clay- mediated acidic catalysis under oxic or suboxic environment, whereas high abundance of rearranged hopanes were found in hydrocarbon source rocks and crude oils that are derived from salty environment in the Songliao Basin. This phenomenon rarely happens all over the world.
文摘Based on the data of 44 samples of hydrocarbon source rocks in Nanpu No.3 buffed-hill region, the kerogen type is judged through the pyrolysis and microscopic identification. At the same time, organic matter maturity and hydrocarbon generation threshold are studied by using vitrinite reflectance, pyrolysis yield and hydrocarbon abundance. Meanwhile the hydrocarbon expulsion threshold is calculated. And the characteristics of organic hydrocarbon generation and expulsion are preliminarily revealed and evaluated. The result shows that the No.3 buffed-hill region has abundant hydrocarbon source rocks with high content of organic carbon. And the primary types of kerogen are II, and lI 2. The hydrocarbon source rocks which passed biochemistry, thermolysis and thermal cracking have developed into the mature-postmature phase of different extents. And plenty of oil and gas were expelled out. It is believed the depth of oil-generating window is 3 600 m and the depth of hydro- carbon-expulsion threshold is 4 100 m. The comprehensive analysis indicates that Nanpu No.3 burried-hill region has a certain condition to generate hydrocarbon which is very promising in oil exploration and thus can become an important exploration and development target next.
文摘The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrating there is a great potential for natural gas exploration in oil-type basins.The ethane isotope of the Bozhong 19-6 condensate gas is heavy,showing the characteristics of partial humic gas.In this paper,aimed at the source rocks of the Bozhong 19-6 gas field in the Bohai Bay Basin,the characteristics of the source rocks in the Bozhong 19-6 structural belt were clarified and the reason are explained from impact of microorganism degradation on hydrocarbon generation of source rocks why the condensate oil and gas had heavy carbon isotope and why it showed partial humic characteristics was explored based on the research of parent materials.The following conclusions were obtained:The paleontology of the Bozhong 19-6 structural belt and its surrounding sub-sags is dominated by higher plants,such as angiosperm and gymnosperm.During the formation of source rocks,under the intensive transformation of microorganism,the original sedimentary organic matter such as higher plants was degraded and transformed by defunctionalization.Especially,the transformation of anaerobic microorganisms on source rocks causes the degradation and defunctionalization of a large number of humic products such as higher plants and the increase of hydrogen content.The degradation and transformation of microorganism don't transform the terrestrial humic organic matter into newly formed“sapropel”hydrocarbons,the source rocks are mixed partial humic source rocks.As a result,hydrogen content incrased and the quality of source rocks was improved,forming the partial humic source rocks dominated by humic amorphous bodies.The partial humic source rocks are the main source rocks in the Bozhong 19-6 gas field,and it is also the internal reason why the isotope of natural gas is heavy.
文摘According to the study on the oil-gas source rocks in China for ten years,in connection with the microscopic, submicroscopic levels, the authors used the microscope photometry together with transmission electronic microscopy, scanning electronic microscopy and proposed a new classification for sedimentary organic matters.
基金supported by the National Natural Science Foundation of China(No.40572085)Open Fund of State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences(No.OGL-200403)+2 种基金State Key Technologies R&D Program during the 10th Five-Year Plan Period(No.2001BA605A02-03-01 and 2004BA616A02-01-01)New-century Excellent Talent Program of Ministry of Education(No.NCET-06-0204)China Postdoctoral Science Foundation(No.2002031282).
文摘In a thermal simulation experiment of gold tubes of closed-system, calculating with the KINETICS and GOR-ISOTOPE KINETICS software, kinetic parameters of gas generation and methane carbon isotopic fractionation from Triassic-Jurassic hydrocarbon source rocks in the Kuqa depression of Tarim Basin are obtained. The activation energies of methane generated from Jurassic coal, Jurassic mudstone and Triassic mudstone in the Kuqa Depression are 197-268 kJ/mol, 180-260 kJ/mol and 214-289 kJ/mol, respectively, and their frequency factors are 5.265×10^13 s^-1, 9.761×10^11 s^-1 and 2.270×10^14 s^-1. This reflects their differences of hydrocarbon generation behaviors. The kinetic parameters of methane carbon isotopic fractionation are also different in Jurassic coal, Jurassic mudstone and Triassic mudstone, whose average activation energies are 228 kJ/mol, 205 kJ/mol and 231 kJ/mol, respectively. Combined with the geological background, the origin of natural gas in the Yinan-2 gas pool is discussed, and an accumulation model of natural gas is thus established. The Yinan- 2 gas is primarily derived from Jurassic coal-bearing source rocks in the Yangxia Sag. Main gas accumulation time is 5-0 Ma and the corresponding Ro is in the range from 1.25 %-1.95 %. The loss rate of natural gas is 25 %-30 %.
基金supported by the National Natural Science Foundation of China (No. 40730209)the SINOPEC project (G0800-06-ZS-319)
文摘A series of biomarkers were identified in the aliphafic and aromatic fractions of the extracts from Late Permian Dalong (大隆) and Wujiaping (吴家坪) formations in Shangsi (上寺) Section, Northeast Sichuan (四川), South China, on the basis of the analysis of gas chromatography-mass spectrometry (GC-MC). The dominance of lower-molecular-weight n-alkanes throughout the profile suggests the dominant contribution of algae and bacteria to the organics preserved in the marine section. Wujiaping Formation is characterized by the elevated contribution from algae as well as other photoautotrophs such as photosynthetic bacteria as shown by the molecular ratios of hopanes to steranes or tricyclic terpanes as well as the ratio of pristane (Pr) and phytane (Ph) to C17 and C18 n-alkanes. This is in accord with the data from the microscopic measurement on the calcareous algae. In contrast, Dalong Formation is featured by enhanced contribution from bacteria and probably terrestrial organics indicated by the enhanced C24 tetracyclic terpanes relative to tricyclic terpanes. The two formations also show a distinct discrimination in sedimentary environmental conditions including redox condition and salinity. The anoxic condition was only found in the middle of the Dalong Formation as shown by the ratios of Pr/Ph and dibenzothiophene to phenanthrene, consistent with the reported data of Mo and U. An enhanced salinity indicated by the homohopane index is observed at the shallow Wujiaping Formation. On the basis of the composition of primary productivity and the redox condition, Dalong Formation is proposed, herein, to be potential hydrocarbon source rocks in the study site. It is notable that the topmost end-Permian is characterized by a large perturbauce in both the redox condition and salinity, with oxic conditions being frequently interrupted by short-term anoxia, likely showing a causal relationship with the episodic biotic crisis across the Permian-Triassic boundary.
基金supported by State Key Laboratory of Petroleum Reservoir Geology and Reservoir Engineering and partly by Northwest Bureau of Petroleum of SINOPEC
文摘The ancient structure characteristic,correlation of the oil and the hydrocarbon source rock characteristics,hydrocarbon migration trace,types and conditions of traps,migration passages and characteristic of hydrocarbon accumulation are researched in this paper.It is shown through the analysis that two main large tectonic activities after the Early Hercynian orogeny resulted in different tectonic patterns in the study area.Two main hydrocarbon infills occurred in the Donghetang Formation,the first occurred in the Early Hercynian resulting in the ancient hydrocarbon accumulation in the northern Tahe,the second infill was a large amount that occurred in places beneficial for hydrocarbon accumulation,such as structural traps and structural-stratigraphic traps formed in the Early Himalayan orogeny after migration along the faults through source rocks and other passages.Before the earlier period of the Himalayan orogeny,the petroleum mainly migrated to the north,whereas petroleum migrated to the south and southeast because of the structural reverse in the Himalayan orogeny,so the middle and later period of the Himalayan orogeny is the key period for hydrocarbon accumulation.The model of"oil generation formed early,hydrocarbon accumulation controlled by the faults through source rocks and structures formed late"is proposed.It is pointed out that the south of the research area is currently the beneficial district for hydrocarbon accumulation, which provides the basis for future petroleum exploration.
基金supported by the SINOPEC project (G0800-06-ZS-319)the National Natural Science Foundation of China (No. 40531004)
文摘The marine primary producers assimilate the atmospheric CO2 to form the organic carbon in surface water. The organic carbon then settles down through the water column and is removed from the oceans by final preservation in sediments in the form of petroleum or nature gases. The reconstruction of paleoproductivity will thus improve our understanding of the biological processes in the formation of fossil energy resource and help to locate new sites for future exploration. In this study, biorelated elements P, Cd, Al, Ba, as well as redox sensitive element Mo, were analyzed in the 448 rock samples collected from Permian strata at the Shangsi (上寺) Section, Guangyuan (广元), Northeast Sichuan (四川) in China. On the basis of the Ti content, the nondetrital contents of P, Ca, and Al, denoted as Pxs, Cdxs, and Alxs, were calculated and found to coincide with the TOC content throughout the whole section, with some enrichment intervals being found in the middle part of Chihsia Formation, topmost Maokou (茅口) Formation, and Dalong (大隆) Formation. This suggests that the biorelated elements could he used as proxies for the paleoproductivity here in this section. Baxs, a paleoproductivity indicator widely used in the paleoceanography, shows insignificant correlation with TOC, Pxs, Cdxs, and Alxs, probably arising from the loss of biological barium in anoxic conditions. Compiled with the data of TOC content and Pxs, Cdxs, and Alxs, three episodes of enhanced paleoproductivity were identified in Permian strata including the middle part of Chihsia Formation, topmost Maokou Formation, and Dalong Formation.
基金supported by the CNPC Science and Technology Study Financing Project (EDR/CN-01-102)
文摘The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effective source rock, reservoir bed types and source-reservoir-seal assemblages, petroleum system theory has been used to classify the petroleum system of the Sufyan Depression. Vertically, the Sufyan Depression consists of two subsystems. One is an Abu Gabra subsystem as a self generating, accumulating and sealing assemblage. The other subsystem is composed of an Abu Gabra source rock, Bentiu channel sandstone reservoir and Darfur group shale seal, which is a prolific assemblage in this area. Laterally, the Sufyan Depression is divided into eastern and western parts with separate hydrocarbon generation centers more than 10 000 m deep. The potential of the petroleum system is tremendous. Recently, there has been a great breakthrough in exploration. The Sufyan C-1 well drilled in the central structural belt obtained high-yielding oil flow exceeding 100 tons per day and controlled geologic reserves of tens of millions of tons. The total resource potential of the Sufyan Depression is considerable. The central structural belt is most favorable as an exploration and development prospect.
基金supported by the National Science Foundation of China (Grant No. 41676050)。
文摘Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which focuses on difficulties in prediction of hydrocarbon source rocks in basins or sags with low exploration degree and insufficient hydrocarbon source rock indicators, taking the Wenchang Formation of northern Zhu I Depression, Pearl River Mouth Basin as an example, proposed a hypothesis of “finding lakes and hydrocarbon source rocks”. Detailed steps include, first, determination of the lacustrine basin boundary according to analysis of seismic foreset facies, determination of the depositional area based on the compilation of strata residual thickness maps, determination of the lacustrine basin shape according to deciphering slope break belt system, determination of the fluctuation of paleo-water depth according to biogeochemical indicators of mature exploration areas, determination of the lacustrine basin scale based on analyses of tectonics intensity and accommodation space, which prove the existence of the lacustrine basin and identify the range of semi deep-deep lake;second, further analyses of tectonopalaeogeomorphology, paleo-provenance,palaeoclimate and paleo-water depth to reconstruct the geologic background of the original basin and semideep-deep lacustrine facies, to determine the distribution of semi-deep/deep lacustrine sediments in combination with studies of logging facies, core facies, seismic facies and sedimentary facies, and to rank the sags’ potential of developing hydrocarbon source rocks from controlling factors of source-to-sink system development;third, on the basis of regional sedimentary facies analysis, through identification and assessment of seismic facies types of semi-deep/deep lacustrine basins in mature areas, establishing “hydrocarbon source rock facies” in mature areas to instruct the identification and depicting of hydrocarbon source rocks in semideep/deep lacustrine basins with low exploration degree;fourth, through systematical summary of hydrocarbon-rich geological factors and lower limit index of hydrocarbon formation of the sags already revealed by drilling wells(e.g., sag area, tectonic subsidence amount, accommodation space, provenance characteristic, mudstone thickness, water body environment, sedimentary facies types of hydrocarbon source rocks), in correlation with corresponding indexes of sags with low exploration degree, then the evaluation and sorting of high-quality source rocks in areas with sparsely distributed or no drilling wells can be conducted with multi-factors and multiple dimensions. It is concluded that LF22 sag, HZ10 sag and HZ8 sag are II-order hydrocarbon rich sags;whereas HZS, HZ11 and HZ24 are the III-order hydrocarbon-generating sags.
基金supported by the SINOPEC project (G0800-06-ZS-319)the National Natural Science Foundation of China (Nos. 40672081, 40730209)National Basic Research Program of China (No. 2007CB815601)
文摘Minerals might act as important sorbents of sedimentary organic matter and reduce biodegradation, which favors the formation of hydrocarbon source rocks in the earth's history. Since most organic matter is degraded during the sinking process, at ambient temperature, it is important to investigate the adsorption capacity of different minerals during this process, to assess the organic loss from primary productivity to sedimentary organic matter. In this study, montmorillonite and calcite have been selected to study the impact of different minerals on the release, adsorption, and deposition of cyanobacterial (Synechococcus elonpata) fatty acids (FAs) at ambient temperature. Gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) have been utilized to detect the variation in fatty acids. Primary results suggest that minerals have a different impact on dissolved organic matter. Montmorillonite can specifically enhance the release of fatty acids from cyanobacterial cells by lowering the pH values of the solution. The adsorption of the dissolved organic matter by montmoriilonite will also be enhanced under a lower pH value. Conjunction of fatty acids with montmoriilonite to form a complex will favor the sinking and preservation of these organics. Selective adsorption is observed among fatty acids with different carbon numbers. In contrast, calcite does not show any impact on the release and adsorption of organic matter even though it is reportedly capable of acting as a catalyst during the transformation of organic matter at high temperature. The primary data bridge a link between primary productivity and sedimentary organic matter, suggesting the relative importance of claystones in the formation of hydrocarbon source rocks in the earth's history.
基金supported by the National Natural Science Foundation of China (Nos. 40730209, 40525008, 40621002)the 111 project (B08030)the SINOPEC project (G0800-06-ZS-319)
文摘The molecular organic compounds have been identified by gas chromatography (GC) and GC-mass spectrometry (GC-MS) from Mesoproterozoic rocks in the Xuaniong (宣龙) depression in North China. The main saturated compounds are n-alkanes, monomethylalkanes, n-alkylcyclohexanes, acyclic isoprenoids, and hopanes. The dominant lower-molecular-weight n-alkanes are indicative of the main contribution of microorganisms, in particular, the chemosynthetic bacteria. The presence of abundant monomethylalkanes (mid- and end-branched) and the long chained (〉C20) acyclic isoprenoids indicates the existence of abundant bacteria and/or archaea in ancient oceans. The low abundance of pristane and phytane is suggestive of the relatively low abundance of photosynthetic autotrophs in comparison with chemosynthetic bacteria in the Mesoproterozoic oceans in North China. The sedimentary environmental condition is suboxic/anoxic, as indicated by the low value of the Pr/Ph ratio as well as the presence of abundant sulfur-bearing organic compounds, consistent with the other geochemical data in North China and elsewhere in the world. Both the composition of the primary producers and the sedimentary environmental conditions are favorable for the formation of hydrocarbon source rocks.
基金was supported by National Natural Science Foundation of China (Grant Nos. 41073007 and 41273005)National Basic Research Program of China (Grant No. 2011CB808800)+3 种基金the 111 Project (Grant No. B08030)Research Fund for the Doctoral Program of Higher Education (Grant No. 20110145130001)special funding from the State Key Laboratory of Geological Processes and Mineral Resourcesa contribution to IGCP Project 572 (Grant No. GPMR201301)
文摘The change of the primary productivity across the Permian-Triassic boundary (PTB) remains controversial. In this study, records from two deep-water sections in South China (Xiakou and Xinmin sections) show the primary productivity decreased gradually from the latest Permian to the earliest Triassic, and five evolutionary stages Increase-Decrease-Recovery-Recession- Stagnation) can be observed from Clarkina changxingensis-C, deflecta to Hindeodus parvus-lsarcicella isarcica zones. Pri- mary productivity decreased abruptly from the base of C. meishanensis zone. Besides, for adjusting to the deterioration of the oceanic environment, the primary producers in the oceanic surface had changed to acritarch and cyanobacteria, which were more tolerant of stressful environment. Then the producers were under huge stagnation in the H. parvus-L isarcica zone. The values of quantitative calculation of the primary productivity from the black rock series in the Dalong Formation were very high, corresponding to that of an upwelling area in modern ocean, which shows that the strata of the Dalong Formation in the study region are potential hydrocarbon source-rocks. This result may come from the fact that South China craton was located at the equatorial upwelling area during the Permian-Triassic transitions. But organic matter contents were different in various sections because they could be affected by redox conditions and diagenesis process after burial.
基金supported by the CNPC Science and Technology Study Financing Project (No. EDR/CN-01-102)
文摘Petroleum system theory has been used to study characteristics of the Fula depression in the Central African fault zone.In this system,deep lacustrine facies mudstone in the Abu Gabra For-mation of the Lower Cretaceous is a very good source rock,thick deltaic facies sandstone of the Abu Gabra Formation and fluvial facies sandstone of the Bentiu Formation are good reservoir beds,and the mudstone in the Upper Cretaceous Darfur Group is the regional cap rock.The oil search mode and fault block trap seal-off conditions are considered here for passive rift basins.Particularly with respect to oil source rock distribution,successive development of reverse fault block and faulted anticlinal traps on low relief structures could have accumulated hydrocarbons because of lateral sealing by down-thrown mudstone along the up-dipping reservoir beds.At present,discoveries in this system are all large-duty oil fields.In 2009,proved reserves exceeded 2×108 t,and about 3×106 t annual throughput of crude oil was obtained.Risk exploration of the Fula depression is of short cycle and high benefit,which will be of great help for exploration in the Muglad basin.