期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Preparation, Characterization, Hydrodesulfurization and Hydrodenitrogenation Activities of Alumina-supported Tungsten Phosphide Catalysts 被引量:11
1
作者 李翠清 孙桂大 +1 位作者 李成岳 宋亚娟 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第2期184-193,共10页
Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperatur... Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperature-programmed reduction of supported tungsten phosphate (precursor of WP/Al2O3 catatlysts) in H2 at 650℃ for 4h. The catalysts were characterized by XRD, BET, TG/DTA , XPS and 31P MAS-NMR. The activities of these catalysts were tested in the hydrodenitrogenation (HDN) of pyridine and hydrodesulfurization (HDS) of thiophene at 340℃ and 3.0MPa. The results showed that owing to the stronger interaction of the support with the active species, the precursor of WP/Al2O3 catalyst was more difficultly phosphided and a greater amount of W spe- cies was in a high valence state W6+ on the surface of the catalyst prepared by the impregnation method than that by the mixing method. 31P MAS-NMR results indicated that 31P shift from 85% H3PO4 of 2.55×10-4 for WP and 2.57 ×10-4 for WP/γ-Al2O3 catalysts prepared by mixing method. Such WP/Al2O3 catalysts showed higher HDN activi- ties and lower HDS activities than those prepared by the impregnation method under the same loading of WP. WP/γ-Al2O3 catalysts with weak interaction between support and active species were favorable for HDN reaction while the WP/γ-Al2O3 catalysts with strong interaction were favorable for HDS reaction. 展开更多
关键词 HYDRODESULFURIZATION hydrodenitrogenation tungsten phosphide PYRIDINE THIOPHENE
下载PDF
NiMo/Al_2O_3 catalyst containing nano-sized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel 被引量:8
2
作者 Hailiang Yin Tongna Zhou Yunqi Liu Yongming Chai Chenguang Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第4期441-448,共8页
Two mixed-matrix NiMo/Al2O3 catalysts containing nano-and micro-sized zeolite Y have been prepared to explore the size effect of zeolite Y particle on the hydrodesulfurization(HDS)and hydrodenitrogenation(HDN)acti... Two mixed-matrix NiMo/Al2O3 catalysts containing nano-and micro-sized zeolite Y have been prepared to explore the size effect of zeolite Y particle on the hydrodesulfurization(HDS)and hydrodenitrogenation(HDN)activities of fluid catalytic cracking(FCC)diesel.They were characterized by SEM,BET,XRD,H2-TPR,NH3-TPD and HRTEM.The results show that the catalyst containing nano-sized zeolite Y possesses larger average pore diameter,higher pore volume,weaker and lesser acid sites,more easily reducible metal phases,shorter MoS2 slabs and more slab layers than the catalyst containing micro-sized zeolite Y.The catalysts were also evaluated with a high-pressure fixed-bed reactor using real FCC diesel as feed.The results display that the catalyst containing nano-sized zeolite Y bears higher HDS and HDN activities and exhibits higher relative rate constant for the removal of total sulfur or nitrogen than the one containing micro-sized zeolite. 展开更多
关键词 zeolite Y nano-sized zeolite micro-sized zeolite HYDRODESULFURIZATION hydrodenitrogenation DIESEL
下载PDF
Synergetic effect between sulfurized Mo/γ-Al_2O_3 and Ni/γ-Al_2O_3 catalysts in hydrodenitrogenation of quinoline 被引量:4
3
作者 Lihua Liu Bin Liu Yongming Chai Yunqi Liu Chenguang Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期214-217,共4页
An evidence for the synergetic effect between the stacked bed of Mo/γ-Al2O3 and Ni/γ-Al2O3 in the hydrodenitrogenation (HDN) reaction of quinoline has been provided in this paper. The synergism factor decreases wh... An evidence for the synergetic effect between the stacked bed of Mo/γ-Al2O3 and Ni/γ-Al2O3 in the hydrodenitrogenation (HDN) reaction of quinoline has been provided in this paper. The synergism factor decreases when the reaction temperature increases (280?340 ?C). The synergetic effect leads to improve the hydrogenation activity for the stacked bed compared with the single Mo/γ-Al2O3 bed, which may be attributed to the generation of hydrogen spillover on the Ni/γ-Al2O3 catalyst. 展开更多
关键词 hydrogen spillover synergetic effect hydrodenitrogenation NiMo catalyst
下载PDF
Charge effects on quinoline hydrodenitrogenation catalyzed by Ni-Mo-S active sites-A theoretical study by DFT calculation 被引量:2
4
作者 Si-Jia Ding Shao-Zhong Peng +3 位作者 Zuo-Jie Yan Ji-Feng Wang Shu-Jiao Jiang Zhan-Lin Yang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期339-344,共6页
The charge distribution on Ni-Mo-S active sites can affect hydrodenitrogenation(HDN)activity.In this study,a series of model Ni-Mo-S were developed with various charge distributions.For comparison,the charge distribut... The charge distribution on Ni-Mo-S active sites can affect hydrodenitrogenation(HDN)activity.In this study,a series of model Ni-Mo-S were developed with various charge distributions.For comparison,the charge distribution effects on quinoline HDN were studied.The results show that a lack of electrons and extra protons can both lower the orbital eigenvalue of the Ni-Mo-S,leading to stronger adsorption of nitrogen-containing compounds and inhibition of ammonia desorption.Electron deficiency will improve the generation of active hydrogen on the active sites but inhibit hydrogen transfer to the nitrogen compounds;extra protons can provide H^(+)to the nitrogen compounds,which will flexibly transfer between the nitrogen compound and active sites,thus improving the cleavage of the C-N bond. 展开更多
关键词 Charge distribution Ni-Mo-S active Sites QUINOLINE hydrodenitrogenation Quantum chemistry calculation
下载PDF
Effect of Operation Variables on Hydrodenitrogenation and Hydrodesulfurization over NiMo/Al_2O_3 Catalysts 被引量:2
5
作者 段爱军 徐春明 林世雄 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第6期743-746,共4页
Using the JQ-II high pressure hydrogenation micro-reactor unit, the reactivity of Athabasca bitumen derived heavy gas oil was studied over commercial and homemade hydrotreating catalysts. The effects of catalyst prepa... Using the JQ-II high pressure hydrogenation micro-reactor unit, the reactivity of Athabasca bitumen derived heavy gas oil was studied over commercial and homemade hydrotreating catalysts. The effects of catalyst preparation variables and the influences of operation conditions, such as pressure, temperature, hydrogen/oil ratio and space velocity were also examined. It was shown that the optimal concentrations of the active components were 5% of NiO, 20% of MoO3 and 3.5% of phosphorus (by mass), and the suitable operation conditions were determined experimentally. 展开更多
关键词 HYDROTREATMENT heavy gas oil HYDRODESULFURIZATION hydrodenitrogenation
下载PDF
Ni/Mo_2 N as a Highly Active Hydrodenitrogenation Catalyst
6
作者 Wen Yu ZHANG Xin Ping WANG +1 位作者 Heng Fang JIN Qin XIN (State key Laboratory of Catalysis,Dalian Institute of Chemical Physiscs,Chinese Academy Of Sciences,Dalian 116023)(Inner Mongolia Polytechnic Universal,Huhhot 010062) 《Chinese Chemical Letters》 SCIE CAS CSCD 1996年第9期849-852,共4页
The catalysts were prepared by the temperature programmed reaction (TPR) of MoO3 with NH3 at various temperatures in the range of 573K~973K, and their hydrodenitrogenation (HDN) activities were tested in situ.It is s... The catalysts were prepared by the temperature programmed reaction (TPR) of MoO3 with NH3 at various temperatures in the range of 573K~973K, and their hydrodenitrogenation (HDN) activities were tested in situ.It is shown that molybdenum nitrid(Mo2N) was formed above 923K and its intermediate MoO2 formed at about 573~623K under the rapid (5K/min.) TPR conditions.Mo2N is the most active species for pyridine HDN among MoO3,MoO2,MoS2,and Mo2N. Moreover,it can be promoted by adding Ni component.It is shown that the Ni/Mo2N catalyst prepared by adding some NiO into the precursor MoO3 has a steady HDN activity Which is far higher than that of the commercial sulfided NiMo/Al2O3(HR346) catalyst. 展开更多
关键词 MO Ni/Mo2 N as a Highly Active hydrodenitrogenation Catalyst
下载PDF
Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation reactions
7
作者 Yao Shi Zhao Li +7 位作者 Changfeng Yang Zhanlin Yang Zhenhui Lv Chong Peng Bao-Lian Su Weikang Yuan Xinggui Zhou Xuezhi Duan 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第6期897-908,共12页
Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfiirization(HDS)/hydrodeni-trogenation(HDN)of gas oil.The effects of catalyst particl... Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfiirization(HDS)/hydrodeni-trogenation(HDN)of gas oil.The effects of catalyst particle shapes(sphere,cylinder,trilobe,and tetralobe)and pore structures(pore diameter and porosity)on HDS/HDN performance at the particle scale are investigated via mathematical modeling.The relationship between particle shape and effectiveness factor is first established,and the specific surface areas of different catalyst particles show a positive correlation with the average HDS/HDN reaction rates.The catalyst particle shapes primarily alter the average HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor.An optimal average HDS/HDN reaction rate exists as the catalyst pore diameter and porosity increase,and this optimum value indicates a tradeoff between diffusion and reaction.In contrast to catalyst particle shapes,the catalyst pore diameter and the porosity of catalyst particles primarily alter the surface HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor.This study provides insights into the engineering of catalyst particle shapes and pore structures for improving HDS/HDN catalyst particle efficiency. 展开更多
关键词 hydrodesulfiirization hydrodenitrogenation particle shape pore structure
原文传递
Synthesis of Ni_2P promoted trimetallic NiMoW/γ-Al_2O_3 catalysts for diesel oil hydrotreatment 被引量:3
8
作者 Ling Lan Shaohui Ge +2 位作者 Kunhong Liu Yuandong Hou Xiaojun Bao 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期117-122,共6页
The Ni2P promoted and γ-Al2O3 supported NiMoW sulfide catalyst consisting of 4 wt% Mo, 22 wt% W, 2 wt% Ni and 2.5 wt% Ni2P was synthesized by a co-impregnation method. The catalysts were characterized by N2 adsorptio... The Ni2P promoted and γ-Al2O3 supported NiMoW sulfide catalyst consisting of 4 wt% Mo, 22 wt% W, 2 wt% Ni and 2.5 wt% Ni2P was synthesized by a co-impregnation method. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, NH3 temperature-programmed desorption (NH3-TPD) and transmission electron microscopy (TEM). The results showed that Ni2P, Ni, Mo and W species were highly dispersed over γ-Al2O3. The hydrodesulfurization (HDS) of dibenzothiophene (DBT) showed that the presence of Ni2P brought a strong promotional effect on the HDS activity, which was further confirmed by the HDS and hydrodenitrogenation (HDN) of diesel oil under industrial conditions. The enhancement in HDN activity and stability by Ni2P addition could be attributed more to the effect of new active sites of Ni2P than that of acidity modification. The as-prepared Ni2P-NiMoW/γ-Al2O3 catalyst showed better hydrotreating performance than NiMoW/γ-Al2O3 and commercial catalysts. 展开更多
关键词 NiMoW sulfide Ni2P phosphide HYDRODESULFURIZATION hydrodenitrogenation diesel oil
下载PDF
Supercritical Water as a Reaction Medium for Nitrogen-Containing Heterocycles 被引量:1
9
作者 Wahyudiono Yui Matsunaga +2 位作者 Siti Machmudah Mitsuru Sasaki Motonobu Gotol 《Journal of Chemistry and Chemical Engineering》 2012年第10期897-910,共14页
Supercritical water has been focused on as an environmentally attractive reaction media, in which organic materials can be decomposed into smaller molecules. The reaction behavior of pyrrole as a simple model compound... Supercritical water has been focused on as an environmentally attractive reaction media, in which organic materials can be decomposed into smaller molecules. The reaction behavior of pyrrole as a simple model compound of nonbasic nitrogen compounds found in petroleum residua was studied in supercritical water with a batch type reactor. The reaction was carried out at temperatures of 698-748 K and at various pressures under an argon atmosphere. The chemical species in the aqueous products were identified by GCMS (gas chromatography mass spectrometry) and quantified using GC-FID (gas chromatography flame ionization detector). The effect of temperature and reaction time on the conversion process of pyrrole is presented. Under supercritical water conditions, pyrrole underwent successful decomposition in water into its derived compounds. The conversion of pyrrole could approach 81.12 wt% at 723 K and 40 MPa within 240 min of reaction time. The decomposition process was accelerated with the existence of water at the same temperature. Ultimate analysis of solid products was also conducted using a CHN analyzer. The process investigated in this study may form the basis for an efficient method of nitrogen compound decomposition in future. 展开更多
关键词 Supercritical water PYRROLE hydrodenitrogenation non-basic aromatic nitrogen compound conversion.
下载PDF
Effect of Reduction Temperature on Hydrofining Performance of Supported Molybdenum Phosphide Catalyst
10
作者 Fengyan Li Zhifang Zhao +3 位作者 Qingjie Li Tianbo Zhao Cuiqing Li Guida Sun 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第4期233-237,共5页
A series of supported molybdenum phosphide catalysts were prepared by impregnation method. XRD, TG-DTG, XPS and BET were used to study the phase, compositions and surface areas of the prepared catalysts. A model react... A series of supported molybdenum phosphide catalysts were prepared by impregnation method. XRD, TG-DTG, XPS and BET were used to study the phase, compositions and surface areas of the prepared catalysts. A model reactant containing thiophene, pyridine and cyclohexene was used for the measurements of catalytic activities. The effect of reduction temperature on catalytic activities was investigated. The analysis results by XRD and BET are very different when the reduction temperature is changed from 400 to 900 ℃. MoP/γ-Al2O3 catalysts and CoMoP/γ-Al2O3 catalysts prepared at the reduction temperature of 500 ℃ are the most active ones. 展开更多
关键词 molybdenum phosphide reduction temperature hydrodenitrogenation HYDRODESULFURIZATION supported catalyst
下载PDF
Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts
11
作者 Guida SUN Cuiqing LI +1 位作者 Zhijun ZHOU Fengyan LI 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2008年第2期155-164,共10页
Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors(supported phospho-tungstate catalysts)in H2 and characterized by X-ray diffraction(XRD),BET,temperature-prog... Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors(supported phospho-tungstate catalysts)in H2 and characterized by X-ray diffraction(XRD),BET,temperature-programmed desorption of ammonia(NH3-TPD)and X-ray photoelectron spectroscopy(XPS).The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis(TG-DTA)and the suitable phosphiding temperatures were defined.The hydrodesulfurization(HDS)and hydrodenitrogenation(HDN)activities of the catalysts were tested by using thiophene,pyridine,dibenzothiophene,carbazole and diesel oil as the feedstock.The TiO2,c-Al_(2)O_(3) supports and the Ni,Co promoters could remarkably increase and stabilize active W species on the catalyst surface.A suitable amount of Ni(3%–5%),Co(5%–7%)and V(1%–3%)could increase dispersivity of the W species and the BET surface area of the WP/c-Al_(2)O_(3) catalyst.The WP/c-Al_(2)O_(3) catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene(DBT)HDS and pyridine HDN activities.The Ni,Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/c-Al_(2)O_(3) catalyst.The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/c-Al_(2)O_(3) catalyst.In general,a support or promoter in the WP/c-Al_(2)O_(3) catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities. 展开更多
关键词 supported tungsten phosphide catalyst hydrodesulfurization(HDS) hydrodenitrogenation(HDN) DIBENZOTHIOPHENE carbazole
原文传递
Promotion of boron phosphate on the NiMoAl catalyst for hydroprocessing FCC slurry oil
12
作者 Changwei Liu Chunyan Tu +2 位作者 Qi Chen Qian Zhang Wei Huang 《Carbon Resources Conversion》 2022年第3期240-247,共8页
Mesoporous NiMoAl catalysts with boron phosphate(BPO4)modification were synthesized through the complete liquid-phase method.X-ray diffraction(XRD)analysis evidenced the presence of BPO4-AlOOH mixed support in these B... Mesoporous NiMoAl catalysts with boron phosphate(BPO4)modification were synthesized through the complete liquid-phase method.X-ray diffraction(XRD)analysis evidenced the presence of BPO4-AlOOH mixed support in these BPO4-modified NiMoAl samples.The total amount of acid sites declined,but the surface acidity was strengthened by adding BPO4 into the NiMoAl catalyst.It’s worth noting that the incorporation of BPO4 could increase the concentrations of Ni and Mo species on the catalyst surface and greatly improve the dispersion of(Ni)MoS2 active phases,as indicated by X-ray photoelectron spectroscopy(XPS)and transmission electron microscopy(TEM)measurements.The catalytic performance of these BPO_(4)-modified NiMoAl catalysts was investigated with the hydroprocessing of fluid catalytic cracking(FCC)slurry oil.The nitrogen-containing compounds removal from the oil was significantly enhanced with increasing the molar ratio of boron phosphate/aluminum.The NM-BPA(0.55)catalyst exhibited the best hydrodenitrogenation(HDN)activity,highlighting the significant impact of Mo sulfidation degree and the dispersion of active metals on HDN performance.The introduction of boron phosphate could also promote the hydrocracking activity of the NiMoAl catalyst,as demonstrated by SARA analysis and simulated distillation of liquid products. 展开更多
关键词 NiMo catalysts Boron phosphate FCC slurry oil hydrodenitrogenation HYDRODESULFURIZATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部