To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe...To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.展开更多
Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proporti...Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.展开更多
A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,redu...A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,reducing sulfur content from 10000μg/g to less than 10μg/g,with experimental and predicted data showing a discrepancy of less than 10%.The diesel UDHDS reaction was simulated by combining the mass transfer,reaction kinetics model,and physical properties of diesel.The results showed how the concentrations of H2S,hydrogen,and sulfur in the gas,liquid,and solid phases varied along the reactor length.Moreover,the study discussed the effects of each process parameter and impurity concentrations(H2S,basic nitrogen and,non-basic nitrogen)on diesel UDHDS.展开更多
Micro-mesoporous ZK-1 molecular sieves with different Si/Al ratios were used as supports for binary Co-Mo hydrodesulfurization(HDS) catalysts.The CoMo/ZK-1 catalysts were prepared using an over-loading impregnation ...Micro-mesoporous ZK-1 molecular sieves with different Si/Al ratios were used as supports for binary Co-Mo hydrodesulfurization(HDS) catalysts.The CoMo/ZK-1 catalysts were prepared using an over-loading impregnation method,and characterized using N2 physisorption,X-ray diffraction,temperature-programmed NH3 desorption,temperature-programmed reduction(TPR),ultraviolet-visible diffuse reflectance spectroscopy,and high-resolution transmission electron microscopy(HRTEM).The results show that the CoMo/ZK-1 catalysts have high surface areas(~700 m^2/g),large pore volumes,and hierarchical porous structures,which promote the dispersion of Co and Mo oxide phases on the ZK-1 supports.The TPR results show that the interactions between the Co and Mo oxide phases and the ZK-1 support are weaker than those in the CoMo/γ-Al2O3 catalyst.The HRTEM results show that the CoMo/ZK-1 catalysts have better MoS2 dispersion and more active edge sites.The catalysts were tested in HDS of dibenzothiophene.Under mild reaction conditions,the activity of Co and Mo sulfides supported on ZK-1 was higher than those of Co and Mo sulfides supported on ZSM-5,A1KIT-1,and γ-Al2O3.展开更多
A series of sulfided tertiary NiMoP/ γ Al 2O 3 catalysts with different contents of MoO 3 were prepared by using molybdophosphoric acid of Keggin structure(H 3PMo 12 O 40 ) and nickel nitrate as origins of active pha...A series of sulfided tertiary NiMoP/ γ Al 2O 3 catalysts with different contents of MoO 3 were prepared by using molybdophosphoric acid of Keggin structure(H 3PMo 12 O 40 ) and nickel nitrate as origins of active phase components of molybdenum, phosphorus and nickel, and characterized by TPR technique, with their HDS activity being investigated with thiophene as a model substrate. For the sulfided Mo 0 catalyst containing no nickel as promoter, the only hydrogen sulfide evolution peak Ⅰ is observed at 462 K and attributed to the hydrogenation of the so called edge sulfur atoms chemisorbed on coordinatively unsaturated(cus) Mo x+ sites on the MoS 2 phase(MoS 2 slab). With the introduction of nickel into the active phase of the sulfided Mo 0 catalyst and with the increase of the molybdenum loading, a new hydrogen sulfide evolution peak Ⅱ gradually develops at the low temperature side of the peak Ⅰ, at the same time accompanied by both the increase of the area ratio of the peak Ⅱ to the peak Ⅰ and the shift of the hydrogen sulfide evolution maximum rate to lower temperatures, which may imply the existence of two kinds of active centers related to molybdenum and nickel respectively and the synergic action between the two centers above. It should be noted that for the sulfided NiMoP/ γ Al 2O 3 catalysts, the thiophene HDS rate and the quantity of hydrogen sulfide evolved during TPR process increase monotonously with the atomic ratio of molybdenum to nickel in the form of [ n (Ni)+ n (Mo)]/ n (Ni). On the basis of the results here, the conclusion may be reached that the two kinds of vacancies can be formed on the edge of Ni Mo S slab due to the loss of S during TPR process and vacancies or sites related to the H 2S evolution peak II should be regarded as the mainly active reaction centers of thiophene HDS.展开更多
基金funding of the National Key Research and Development Plan(Grant 2017YFB0306600)the Project of SINOPEC(NO.117006).
文摘To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.
文摘针对室内全球导航卫星系统(Global navigation satellite system,GNSS)信号受遮挡时,农用车辆协同定位精度低、稳定性差、信号丢包等问题,本文开展面向超宽带(Ultra-wideband,UWB)调频技术的室内外农用车辆协同定位算法研究。首先,搭建三基站多边测距定位模型,实现主基站绝对位置标定以及辅助基站绝对位置坐标的变换求解;其次,提出全质心加权最小二乘的高速双边双向(Weighted least squares high double sided two-way ranging,WLS-HDS-TWR)农机协同定位算法,基于泰勒级数展开的WLS估计算法,求解主车位置。同时,提出面向室内环境的多状态基站组合的UWB定位模块布设模式,并验证其可行性;通过飞行时间法(Time of flight,TOF)获取主从车距离信息,融合GNSS标定位置信息、主车坐标信息以及测距信息,实现主从车协同定位。最后,基于Prescan/Simulink搭建联合仿真平台,验证提出算法的可靠性;通过农用履带车辆开展室内及室外协同定位实车试验,试验结果表明:全质心WLS-HDS-TWR协同定位算法可有效解决室内GNSS信号缺失问题,室内环境下,定位精度较HDS-TWR及全质心LS-HDS-TWR算法分别提高26.98%和22.03%,满足智能农机协同定位作业需求。
基金The authors acknowledge the financial supports from the National Science Foundation of China(U1908204,91845201,and 22002093)the funds that Central Government Guides Local Science and Technology Development(2022JH6/100100052)Scientific Research Project of Education Department of Liaoning Province(LQN202006).
文摘Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.
文摘A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,reducing sulfur content from 10000μg/g to less than 10μg/g,with experimental and predicted data showing a discrepancy of less than 10%.The diesel UDHDS reaction was simulated by combining the mass transfer,reaction kinetics model,and physical properties of diesel.The results showed how the concentrations of H2S,hydrogen,and sulfur in the gas,liquid,and solid phases varied along the reactor length.Moreover,the study discussed the effects of each process parameter and impurity concentrations(H2S,basic nitrogen and,non-basic nitrogen)on diesel UDHDS.
基金financially supported by the National Natural Science Foundation of China (NNSFC,21206017)~~
文摘Micro-mesoporous ZK-1 molecular sieves with different Si/Al ratios were used as supports for binary Co-Mo hydrodesulfurization(HDS) catalysts.The CoMo/ZK-1 catalysts were prepared using an over-loading impregnation method,and characterized using N2 physisorption,X-ray diffraction,temperature-programmed NH3 desorption,temperature-programmed reduction(TPR),ultraviolet-visible diffuse reflectance spectroscopy,and high-resolution transmission electron microscopy(HRTEM).The results show that the CoMo/ZK-1 catalysts have high surface areas(~700 m^2/g),large pore volumes,and hierarchical porous structures,which promote the dispersion of Co and Mo oxide phases on the ZK-1 supports.The TPR results show that the interactions between the Co and Mo oxide phases and the ZK-1 support are weaker than those in the CoMo/γ-Al2O3 catalyst.The HRTEM results show that the CoMo/ZK-1 catalysts have better MoS2 dispersion and more active edge sites.The catalysts were tested in HDS of dibenzothiophene.Under mild reaction conditions,the activity of Co and Mo sulfides supported on ZK-1 was higher than those of Co and Mo sulfides supported on ZSM-5,A1KIT-1,and γ-Al2O3.
文摘A series of sulfided tertiary NiMoP/ γ Al 2O 3 catalysts with different contents of MoO 3 were prepared by using molybdophosphoric acid of Keggin structure(H 3PMo 12 O 40 ) and nickel nitrate as origins of active phase components of molybdenum, phosphorus and nickel, and characterized by TPR technique, with their HDS activity being investigated with thiophene as a model substrate. For the sulfided Mo 0 catalyst containing no nickel as promoter, the only hydrogen sulfide evolution peak Ⅰ is observed at 462 K and attributed to the hydrogenation of the so called edge sulfur atoms chemisorbed on coordinatively unsaturated(cus) Mo x+ sites on the MoS 2 phase(MoS 2 slab). With the introduction of nickel into the active phase of the sulfided Mo 0 catalyst and with the increase of the molybdenum loading, a new hydrogen sulfide evolution peak Ⅱ gradually develops at the low temperature side of the peak Ⅰ, at the same time accompanied by both the increase of the area ratio of the peak Ⅱ to the peak Ⅰ and the shift of the hydrogen sulfide evolution maximum rate to lower temperatures, which may imply the existence of two kinds of active centers related to molybdenum and nickel respectively and the synergic action between the two centers above. It should be noted that for the sulfided NiMoP/ γ Al 2O 3 catalysts, the thiophene HDS rate and the quantity of hydrogen sulfide evolved during TPR process increase monotonously with the atomic ratio of molybdenum to nickel in the form of [ n (Ni)+ n (Mo)]/ n (Ni). On the basis of the results here, the conclusion may be reached that the two kinds of vacancies can be formed on the edge of Ni Mo S slab due to the loss of S during TPR process and vacancies or sites related to the H 2S evolution peak II should be regarded as the mainly active reaction centers of thiophene HDS.