Hydrodistillation has commonly been used to recover essential oil from various plant materials,including lavender(Lavandula officinalis) flowers.The main objectives of the present study were to model the kinetics of t...Hydrodistillation has commonly been used to recover essential oil from various plant materials,including lavender(Lavandula officinalis) flowers.The main objectives of the present study were to model the kinetics of the lavender essential oil(LEO) hydrodistillation using a phenomenological model,to evaluate the statistical significance of the hydromodule and hydrodistillation time on LEO yield combining a 4~2 full factorial design with the response surface methodology,to model statistically LEO yield by multiple non-linear regression and to determine the optimal process conditions that provided the maximum LEO yield.The fast-essential oil distillation(washing stage) in the initial period and the slow diffusion stage until the saturation occurring simultaneously were observed,justifying the use of the phenomenological model.With increasing the hydromodule,the saturation LEO yield and the washable fraction of the LEO decreased while the washing and diffusion rate constants increased.Knowledge of the LEO oil yield and the hydrodistillation kinetics is important from the techno-economical point of view.展开更多
The main objective of the present study was to model the kinetics of essential oil extraction from swelled ground juniper berries by classic hydrodistillation(HD) and microwave-assisted hydrodistillation(MAHD). A new ...The main objective of the present study was to model the kinetics of essential oil extraction from swelled ground juniper berries by classic hydrodistillation(HD) and microwave-assisted hydrodistillation(MAHD). A new phenomenological kinetic model was developed on the basis of the juniper essential oil extraction mechanism that assumed three mass transfer processes occurring simultaneously: washing, unhindered diffusion and hindered diffusion. The new model was compared to the existing kinetic models. Among the tested models,the new model had the smallest mean relative percentage deviation and the highest corrected Akaike information criterion value. In addition, that, the new model was verified for HD and MAHD of essential oils from some other plant materials. On the basis of the above-mentioned facts, the new model can be recommended for modeling the kinetics of essential oil extraction by both HD and MAHD.展开更多
In this study, laurel essential oils were obtained by using solvent-free microwave extraction (SFME) and hydrodistillation (HD) methods from Laurus nobilis leaves and determined their antioxidant and antimicrobial act...In this study, laurel essential oils were obtained by using solvent-free microwave extraction (SFME) and hydrodistillation (HD) methods from Laurus nobilis leaves and determined their antioxidant and antimicrobial activity. Extraction time was reduced by about 43% in SFME at 622 W and 67% in SFME at 249 W compared to hydrodistillation. Essential oil of laurel was extracted by SFME at 622 W (100%) and 249 W (40%) power levels and HD inhibited oxidation generated by ABTS radical by 93.88%, 94.13% and 92.06%, respectively. Trolox equivalent antioxidant capacities (TEAC) of essential oils were 0.18 mM/mL oil for SFME at 622 W, 1.36 mM/mL oil for SFME at 249 W and 2.40 mM/mL oil for HD (p < 0.05). Essential oils of L. nobilis were extracted by SFME at 100% and 40% power levels and HD inhibited linoleic acid peroxidation by 70.57%, 63.53% and 89.18% respectively. Inhibition effects of laurel essential oils obtained by SFME at different power levels and HD on DPPH radical cation oxidation were not significantly different. The strongest antioxidant activity against DPPH radical was found in the essential oil obtained by SFME at 100% power level. Essential oils displayed antimicrobial activity against Staphylococcus aureus 6538P, Escherichia coli O157:H7 and Salmonella typhimurium NRRL E 4463 except for Listeria monocytogenes. The inhibitory effect on Staphylococcus aureus 6538P survival of laurel oil obtained from SFME by using lower power level was found to be lower than that obtained from SFME at 100% power level and HD展开更多
[Objective] This study aimed to analyze the chemical composition and yield of essential oil and n-hexane extract from moso bamboo to find active compounds with potential value. [Method] Essential oil and n-hexane extr...[Objective] This study aimed to analyze the chemical composition and yield of essential oil and n-hexane extract from moso bamboo to find active compounds with potential value. [Method] Essential oil and n-hexane extract were respectively extracted from moso bamboo of four different ages by using hydrodistillation and ultrasonic-assisted extraction with n-hexane, and analyzed with gas chromatography/mass spectrometry (GC/MS). [Result] The results show that cedrol (46.39%) is the first principal volatile component in essential oil of the middle stem of 7-year old moso bamboo; dibutyl phthalate (59.46%) is the first principal volatile component in n-hexane extract of the middle stem of 3-year old moso bamboo; yield of n-hexane extract is higher than that of essential oil from moso bamboo. [Conclusion] Cedrol is an active compound with potential value.展开更多
The aim of the present work was to investigate the synergetic effect of microwave and ultrasound treatment on the production, chemical composition and antioxidant activity of rose essential oil. The rose essential oil...The aim of the present work was to investigate the synergetic effect of microwave and ultrasound treatment on the production, chemical composition and antioxidant activity of rose essential oil. The rose essential oil was extracted from fresh Rosa x damciscena Mill. petals by four methods, hydrodistillation, steam distillation, organic solvent extraction and ultrasounds followed by microwave hydrodistillation. The chemical composition of the extracts was analysed by GC-MS, and the antioxidant capacity by DPPH. It was found that both chemical composition and the antioxidant activity of the extracts depend on the extraction method. Overall it was found that microwaves coupled with ultrasonic treatment can be used effectively for the intensification of the extraction of monoterpenes and sesquiterpenes--fragrance bearing molecules--and equally, for increased antioxidant activity while using about 4 time shorter extraction time. The scale-up of the method was also evaluated. The results obtained in this research support the possible use of the US/MW method for the extraction of rose essential oil for the pharmaceutical and fragrance industry.展开更多
基金funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project assigned to the Faculty of Technology, Leskovac, University of No, Research Group Ⅲ 45001, No. 451-03-68/2020-14/200133)。
文摘Hydrodistillation has commonly been used to recover essential oil from various plant materials,including lavender(Lavandula officinalis) flowers.The main objectives of the present study were to model the kinetics of the lavender essential oil(LEO) hydrodistillation using a phenomenological model,to evaluate the statistical significance of the hydromodule and hydrodistillation time on LEO yield combining a 4~2 full factorial design with the response surface methodology,to model statistically LEO yield by multiple non-linear regression and to determine the optimal process conditions that provided the maximum LEO yield.The fast-essential oil distillation(washing stage) in the initial period and the slow diffusion stage until the saturation occurring simultaneously were observed,justifying the use of the phenomenological model.With increasing the hydromodule,the saturation LEO yield and the washable fraction of the LEO decreased while the washing and diffusion rate constants increased.Knowledge of the LEO oil yield and the hydrodistillation kinetics is important from the techno-economical point of view.
文摘The main objective of the present study was to model the kinetics of essential oil extraction from swelled ground juniper berries by classic hydrodistillation(HD) and microwave-assisted hydrodistillation(MAHD). A new phenomenological kinetic model was developed on the basis of the juniper essential oil extraction mechanism that assumed three mass transfer processes occurring simultaneously: washing, unhindered diffusion and hindered diffusion. The new model was compared to the existing kinetic models. Among the tested models,the new model had the smallest mean relative percentage deviation and the highest corrected Akaike information criterion value. In addition, that, the new model was verified for HD and MAHD of essential oils from some other plant materials. On the basis of the above-mentioned facts, the new model can be recommended for modeling the kinetics of essential oil extraction by both HD and MAHD.
基金The TUBİTAK,The Scientific and Technologic Research Council of Turkey(Grant No.TOVAG 104 O 265)financially supported this study.
文摘In this study, laurel essential oils were obtained by using solvent-free microwave extraction (SFME) and hydrodistillation (HD) methods from Laurus nobilis leaves and determined their antioxidant and antimicrobial activity. Extraction time was reduced by about 43% in SFME at 622 W and 67% in SFME at 249 W compared to hydrodistillation. Essential oil of laurel was extracted by SFME at 622 W (100%) and 249 W (40%) power levels and HD inhibited oxidation generated by ABTS radical by 93.88%, 94.13% and 92.06%, respectively. Trolox equivalent antioxidant capacities (TEAC) of essential oils were 0.18 mM/mL oil for SFME at 622 W, 1.36 mM/mL oil for SFME at 249 W and 2.40 mM/mL oil for HD (p < 0.05). Essential oils of L. nobilis were extracted by SFME at 100% and 40% power levels and HD inhibited linoleic acid peroxidation by 70.57%, 63.53% and 89.18% respectively. Inhibition effects of laurel essential oils obtained by SFME at different power levels and HD on DPPH radical cation oxidation were not significantly different. The strongest antioxidant activity against DPPH radical was found in the essential oil obtained by SFME at 100% power level. Essential oils displayed antimicrobial activity against Staphylococcus aureus 6538P, Escherichia coli O157:H7 and Salmonella typhimurium NRRL E 4463 except for Listeria monocytogenes. The inhibitory effect on Staphylococcus aureus 6538P survival of laurel oil obtained from SFME by using lower power level was found to be lower than that obtained from SFME at 100% power level and HD
基金Supported by Sub-project of the "Eleventh Five-Year" National Science and Technology Support Program (2006BAD19B04)~~
文摘[Objective] This study aimed to analyze the chemical composition and yield of essential oil and n-hexane extract from moso bamboo to find active compounds with potential value. [Method] Essential oil and n-hexane extract were respectively extracted from moso bamboo of four different ages by using hydrodistillation and ultrasonic-assisted extraction with n-hexane, and analyzed with gas chromatography/mass spectrometry (GC/MS). [Result] The results show that cedrol (46.39%) is the first principal volatile component in essential oil of the middle stem of 7-year old moso bamboo; dibutyl phthalate (59.46%) is the first principal volatile component in n-hexane extract of the middle stem of 3-year old moso bamboo; yield of n-hexane extract is higher than that of essential oil from moso bamboo. [Conclusion] Cedrol is an active compound with potential value.
文摘The aim of the present work was to investigate the synergetic effect of microwave and ultrasound treatment on the production, chemical composition and antioxidant activity of rose essential oil. The rose essential oil was extracted from fresh Rosa x damciscena Mill. petals by four methods, hydrodistillation, steam distillation, organic solvent extraction and ultrasounds followed by microwave hydrodistillation. The chemical composition of the extracts was analysed by GC-MS, and the antioxidant capacity by DPPH. It was found that both chemical composition and the antioxidant activity of the extracts depend on the extraction method. Overall it was found that microwaves coupled with ultrasonic treatment can be used effectively for the intensification of the extraction of monoterpenes and sesquiterpenes--fragrance bearing molecules--and equally, for increased antioxidant activity while using about 4 time shorter extraction time. The scale-up of the method was also evaluated. The results obtained in this research support the possible use of the US/MW method for the extraction of rose essential oil for the pharmaceutical and fragrance industry.