期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads 被引量:8
1
作者 Xu Long Fei Ge Lei Wang Youshi Hong State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第3期335-344,共10页
This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffnes... This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SPT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads. 展开更多
关键词 Submerged floating tunnel Structural dampBuoyancy-weight ratio Cable stiffness coefficient Tunnel net buoyancy - hydrodynamic load
下载PDF
Treatment of Hydrodynamic Loading for Random Sea State
2
作者 Anjan Sarkar , Suhail Ahmad and T. K. Datta M. Tech. StudentAssistant Professor, Department of Applied Mechanics Professor, Department of Civil Engineering, Indian Institute of Technology - Delhi, New Delhi-110 016, Indian 《China Ocean Engineering》 SCIE EI 1996年第3期307-322,共16页
In order to employ cost effective frequency domain analysis for off-shore structures treatment of hydrodynamic loading is essential. Drag and inertia dominated, resonating and antiresonating cases under random sea sta... In order to employ cost effective frequency domain analysis for off-shore structures treatment of hydrodynamic loading is essential. Drag and inertia dominated, resonating and antiresonating cases under random sea states are analyzed to highlight the implications and relative merits of four salient linearization techniques. 展开更多
关键词 random sea hydrodynamic load drag linearisation
下载PDF
EFFECT OF ESCAPE DEVICE FOR SUBMERGED FLOATING TUNNEL (SFT) ON HYDRODYNAMIC LOADS APPLIED TO SFT 被引量:6
3
作者 DONG Man-sheng MIAO Guo-ping +3 位作者 YONG Long-chang NIU Zhong-rong PANG Huan-ping HOU Chao-qun 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第4期609-616,共8页
This paper presents a potential approach to settle the problem of surviving major safety accidents in Submerged Floating Tunnel (SFT) that detachable emergency escape devices are set up outside SFT. The Computationa... This paper presents a potential approach to settle the problem of surviving major safety accidents in Submerged Floating Tunnel (SFT) that detachable emergency escape devices are set up outside SFT. The Computational Fluid Dynamics (CFD) technology is used to investigate the effect of emergency escape devices on the hydrodynamic load acting on SFT in uniform and oscillatory flows and water waves by numerical test. The governing equations, i.e., the Reynolds-Averaged Navier-Stokes (RANS) equations and k - ε standard turbulence equations, are solved by the Finite Volume Method (FVM). Analytic solutions for the Airy wave are applied to set boundary conditions to generate water wave. The VOF method is used to trace the free surface. In uniform flow, hydrodynamic loads, applied to SFT with emergency escape device, reduce obviously. But, in oscillatory flow, it has little influence on hydrodynamic loads acting on SFT. Horizontal and vertical wave loads of SFT magnify to some extend due to emergency escape devices so that the influence of emergency escape devices on hydrodynamic loads of SFT should be taken into consideration when designed. 展开更多
关键词 Submerged Floating Tunnel (SFT) conceptual design FLOW Airy wave escape device hydrodynamic load
原文传递
Aero-Hydrodynamic Coupled Dynamic Characteristics of Semi-Submersible Floating Offshore Wind Turbines Under Inflow Turbulence 被引量:1
4
作者 JIANG Hai-rui BAI Xing-lan Murilo A.VAZ 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期660-672,共13页
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated... In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically. 展开更多
关键词 turbulence characteristics floating offshore wind turbines second-order hydrodynamic loads low-and high-frequency responses aero-hydrodynamic coupling
下载PDF
Influence of Ice Size Parameter Variation on Hydrodynamic Performance of Podded Propulsor 被引量:1
5
作者 GUO Chun-yu XU Pei +2 位作者 WANG Chao WANG Lian-zhou ZHANG Cheng-sen 《China Ocean Engineering》 SCIE EI CSCD 2020年第1期30-45,共16页
During ice-breaking navigation, a massive amount of crushed ice blocks with different sizes is accumulated under the hull of an ice-going ship. This ice slides into the flow field in the forward side of the podded pro... During ice-breaking navigation, a massive amount of crushed ice blocks with different sizes is accumulated under the hull of an ice-going ship. This ice slides into the flow field in the forward side of the podded propulsor, affecting the surrounding flow field and aggravating the non-uniformity of the propeller wake. A pulsating load is formed on the propeller, which affects the hydrodynamic performance of the podded propulsor. To study the changes in the propeller hydrodynamic performance during the ice podded propulsor interaction, the overlapping grid technique is used to simulate the unsteady hydrodynamic performance of the podded propulsor at different propeller rotation angles and different ice block sizes. Hence, the hydrodynamic blade behavior during propeller rotation under the interaction between the ice and podded propulsor is discussed. The unsteady propeller loads and surrounding flow fields obtained for ice blocks with different sizes interacting with the podded propulsor are analyzed in detail. The variation in the hydrodynamic performance during the circular motion of a propeller and the influence of ice size variation on the propeller thrust and torque are determined. The calculation results have certain reference significance for experiment-based research, theoretical calculations and numerical simulation concerning ice podded propulsor interaction. 展开更多
关键词 podded propulsor ice propeller interaction hydrodynamic load overlap grid
下载PDF
Comparative Experimental and Numerical Study of Wave Loads on A Monopile Structure Using Different Turbulence Models
6
作者 ZENG Xin-meng SHI Wei +2 位作者 Constantine MICHAILIDES WANG Kai LI Xin 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期554-565,共12页
This study numerically and experimentally investigates the effects of wave loads on a monopile-type offshore wind turbine placed on a 1:25 slope at different water depths as well as the effect of choosing different tu... This study numerically and experimentally investigates the effects of wave loads on a monopile-type offshore wind turbine placed on a 1:25 slope at different water depths as well as the effect of choosing different turbulence models on the efficiency of the numerical model.The numerical model adopts a two-phase flow by solving Unsteady Reynolds-Averaged Navier−Stokes(URANS)equations using the Volume Of Fluid(VOF)method and three differentk-ωturbulence models.Typical environmental conditions from the East China Sea are studied.The wave run-up and the wave loads applied on the monopile are investigated and compared with relevant experimental data as well as with mathematical predictions based on relevant theories.The numerical model is well validated against the experimental data at model scale.The use of different turbulence models results in different predictions on the wave height but less differences on the wave period.The baseline k-ωturbulence model and Shear-Stress Transport(SST)k-ωturbulence model exhibit better performance on the prediction of hydrodynamic load,at a model-scale water depth of 0.42 m,while the laminar model provides better results for large water depths.The SST turbulence model performs better in predicting wave run-up for water depth 0.42 m,while the laminar model and standard k-ωmodel perform better at water depth 0.52 m and 0.62 m,respectively. 展开更多
关键词 hydrodynamic loads turbulence models Morison equation wave run-up numerical wave tank monopile structure
下载PDF
Numerical study on wave loads and motions of two ships advancing in waves by using three-dimensional translating-pulsating source 被引量:9
7
作者 Yong Xu Wen-Cai Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期494-502,共9页
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course ... A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation. 展开更多
关键词 hydrodynamic interaction - Wave loads ~Ship motions ~ Model test ~ Three-dimensional translating-pulsating source ~ Underway replenishment
下载PDF
Diffraction of Water Waves by A Vertically Floating Cylinder in A Two-Layer Fluid 被引量:3
8
作者 石强 尤云祥 缪国平 《China Ocean Engineering》 SCIE EI 2008年第2期181-193,共13页
In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder ... In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid inelude not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and interhal-wave modes, and transfer of energy between modes. 展开更多
关键词 two-layer fluid vertically floating cylinder hydrodynamic loads surface-wave mode internal-wave hurtle
下载PDF
Experimental Study of An Aquaculture Net Cage in Waves and Current 被引量:2
9
作者 David KRISTIANSEN Pal LADER +1 位作者 Фsten JENSEN David FREDRIKSSON 《China Ocean Engineering》 SCIE EI CSCD 2015年第3期325-340,共16页
Model experiments of a floating fish cage subjected to waves and current have been performed. The objective was to study the dynamic behaviour of the fish cage model in waves and current. The fish cage model was compo... Model experiments of a floating fish cage subjected to waves and current have been performed. The objective was to study the dynamic behaviour of the fish cage model in waves and current. The fish cage model was composed of a model net, a flexible floating collar of the circular plastic type and a weight system. It was found that there are many wave periods in which cancellation of the wave-induced forces on the model occur. These cancellation wave periods are within the range of dimensioning wave periods commonly used for testing of fish farm structures and hence are important to be aware of. Large deformations of the net under realistic wave and current conditions were observed, where contact between the net and other parts of the structure were identified. This may cause damages to the net due to abrasion. 展开更多
关键词 aquaculture structure hydrodynamic loads HYDROELASTICITY
下载PDF
Assessment of pipeline stability in the Gulf of Mexico during hurricanes using dynamic analysis 被引量:3
10
作者 Yinghui Tian Bassem Youssef Mark J.Cassidy 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第2期74-79,共6页
Pipelines are the critical link between major offshore oil and gas developments and the mainland. Any inadequate on-bottom stability design could result in disruption and failure, having a devastating impact on the ec... Pipelines are the critical link between major offshore oil and gas developments and the mainland. Any inadequate on-bottom stability design could result in disruption and failure, having a devastating impact on the economy and environment. Predicting the stability behavior of offshore pipelines in hurricanes is therefore vital to the assessment of both new design and existing assets. The Gulf of Mexico has a very dense network of pipeline systems constructed on the seabed. During the last two decades, the Gulf of Mexico has experienced a series of strong hurricanes, which have destroyed, disrupted and destabilized many pipelines. This paper first reviews some of these engineering cases. Following that, three case studies are retrospectively simulated using an in-house developed program. The study utilizes the offshore pipeline and hurricane details to conduct a Dynamic Lateral Stability analysis, with the results providing evidence as to the accuracy of the modeling techniques developed. 展开更多
关键词 Pipeline On-bottom stability Dynamic lateral stability analysis Force-resultant model hydrodynamic load
下载PDF
Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD 被引量:5
11
作者 Ahmed Elhanafi 《Journal of Ocean Engineering and Science》 SCIE 2016年第4期268-283,共16页
In this paper,hydrodynamic wave loads on an offshore stationary-floating oscillating water column(OWC)are investigated via a 2D and 3D computational fluid dynamics(CFD)modeling based on the RANS equations and the VOF ... In this paper,hydrodynamic wave loads on an offshore stationary-floating oscillating water column(OWC)are investigated via a 2D and 3D computational fluid dynamics(CFD)modeling based on the RANS equations and the VOF surface capturing scheme.The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge.Following the validation stage,the numerical model is modified to consider the pneumatic damping effect,and an extensive campaign of numerical tests is carried out to study the wave-OWC interactions for different wave periods,wave heights and pneumatic damping factors.It is found that the horizontal wave force is usually larger than the vertical one.Also,there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency,whereas the pneumatic damping has a little effect on the horizontal force.Additionally,simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening.Furthermore,3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads,respectively. 展开更多
关键词 Offshore oscillating water column OWC hydrodynamic wave loads Numerical wave tank CFD 3D effects
原文传递
A 2D/3D COUPLED MODEL FOR WAVE FORCES ON MOORED SHIPS IN A HARBORA 被引量:1
12
作者 QIPeng HOUYi-jun WANGYong-xue 《Journal of Hydrodynamics》 SCIE EI CSCD 2004年第5期633-639,共7页
For the purpose of time-domain calculation of wave forces on moored ships ina harbor, the 2D/3D coupled numerical model was developed, in which the horizontally 2Dshallow-water wave model based on the improved Boussin... For the purpose of time-domain calculation of wave forces on moored ships ina harbor, the 2D/3D coupled numerical model was developed, in which the horizontally 2Dshallow-water wave model based on the improved Boussinesq equations was adopted for the calculationin the wide region located far from the ships while the 3D numerical model based on theReynolds-Averaged Navier-Stokes (RANS) equations was used in the limited region adjacent to theships. The domain connection technique with overlaping region between different model regions wasapplied and examined. It is shown that the present partially 3D hybrid model saves calculation timesignificantly compared to the full 3D model for the whole region and is capable of reproducing thecharacteristics of 3D and complicated flows around the ships and 3D hydrodynamic loads on them,which cannot be reproduced by the 2D model alone. 展开更多
关键词 hydrodynamic loads three-dimensional model 2D/3D hybrid model moored ship
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部