A new methodology for hydrodynamic optimization of a Tri SWACH is developed, which considers not only the positions of the side hulls but also the shape of the side hulls. In order to account for the strong near-field...A new methodology for hydrodynamic optimization of a Tri SWACH is developed, which considers not only the positions of the side hulls but also the shape of the side hulls. In order to account for the strong near-field interference effects between closely-spaced multihulls, an integrated hydrodynamic computational tool that consists of a potential-flow based simple CFD tool and an Euler/RANS/Navier-Stokes based advanced CFD tool has been further developed and integrated into a practical multiobjective hydrodynamic optimization tool. The other components of this hydrodynamic optimization tool consist of a hull shape representation and modification module and an optimization module. This enhanced multi-objective hydrodynamic optimization tool has been applied to the hydrodynamic design optimization of the Tri SWACH for reduced drag by optimizing the side hulls only. A new methodology is developed to optimize side hull forms so that the Tri SWACH has a minimal drag for a wide speed range and for various side hull positions. Two sets of the side hulls are developed and used for the design of two optimal Tri SWACH models. Model tests are carried out for two optimal Tri SWACH models at Webb Institute for validations. Substantial drag reductions have been obtained for a wide range of speed.展开更多
With the development of ocean engineering and demand for safety of the ship and offshore structures, the transportation and storage of liquid have become an important issue nowadays. Furthermore, in order to improve t...With the development of ocean engineering and demand for safety of the ship and offshore structures, the transportation and storage of liquid have become an important issue nowadays. Furthermore, in order to improve the hydrodynamic performances of the ship and offshore structures, the anti-rolling liquid tanks are often taken into consideration. The internal-external coupling flow effect is vital for the ship and liquid tank designs, especially when the external wave frequency is close to the natural frequency of liquid tanks with a certain filling ratio, large amplitude motions may occur, which is dangerous to some extent. In this paper, the simulation-based-design method is introduced at first, and the verification of the numerical calculation of internal-external coupling flow with liquid tanks is done then. Finally, the filling ratio of the anti-rolling liquid tank and the installation angle of the anti-rolling fins are optimized to reduce the roll motion amplitude of the hull section to the greatest extent under the combined action of the two anti-rolling devices. Optimization results show that the roll motion amplitude of box-shaped hull section can be successfully reduced by reasonably designing the two anti-rolling devices, which can be a reference to the future design of the fishing ship and other ships with anti-rolling devices.展开更多
For complex aerodynamic and hydrodynamic problems,the analysis of vortex is very important.The Liutex method is an eigenvalue-based method which is local,accurate,and unique,which can give an accurate definition of vo...For complex aerodynamic and hydrodynamic problems,the analysis of vortex is very important.The Liutex method is an eigenvalue-based method which is local,accurate,and unique,which can give an accurate definition of vortex,so the control of vortex can be implemented and effectively guaranteed.Based on Liutex method,two methodologies of centripetal force model and counter-rotation force model were proposed to illustrate the vortex dynamics and possibly strengthen or weaken the vortices.In this paper,the Liutex-based centripetal force model is applied by adding a source term to the Navier-Stokes equations.In order to investigate the influence of the constructed Liutex force model on the 3-dimensional flow around a slow-fat ship,the calm-water drag calculation result of JBC ship is regarded as the initial flow field,and the new resistance and wake performances of the ship are obtained after applying the centripetal force model to the flow field with different strengths.Several views of the comparisons of the new steady flow fields are shown,and the parametric study results indicate that the Liutex-based centripetal force model can effectively change the resistance and wake performances of the JBC ship,which provides a new idea and theoretical basis for the comprehensive hydrodynamic performance optimization of the ship hull.展开更多
文摘A new methodology for hydrodynamic optimization of a Tri SWACH is developed, which considers not only the positions of the side hulls but also the shape of the side hulls. In order to account for the strong near-field interference effects between closely-spaced multihulls, an integrated hydrodynamic computational tool that consists of a potential-flow based simple CFD tool and an Euler/RANS/Navier-Stokes based advanced CFD tool has been further developed and integrated into a practical multiobjective hydrodynamic optimization tool. The other components of this hydrodynamic optimization tool consist of a hull shape representation and modification module and an optimization module. This enhanced multi-objective hydrodynamic optimization tool has been applied to the hydrodynamic design optimization of the Tri SWACH for reduced drag by optimizing the side hulls only. A new methodology is developed to optimize side hull forms so that the Tri SWACH has a minimal drag for a wide speed range and for various side hull positions. Two sets of the side hulls are developed and used for the design of two optimal Tri SWACH models. Model tests are carried out for two optimal Tri SWACH models at Webb Institute for validations. Substantial drag reductions have been obtained for a wide range of speed.
基金Projects supported by the National Key Research and Development Program of China(Grant Nos.2019YFB1704200,2019YFC0312400)the National Natural Science Foundation of China(Grant No.51879159).
文摘With the development of ocean engineering and demand for safety of the ship and offshore structures, the transportation and storage of liquid have become an important issue nowadays. Furthermore, in order to improve the hydrodynamic performances of the ship and offshore structures, the anti-rolling liquid tanks are often taken into consideration. The internal-external coupling flow effect is vital for the ship and liquid tank designs, especially when the external wave frequency is close to the natural frequency of liquid tanks with a certain filling ratio, large amplitude motions may occur, which is dangerous to some extent. In this paper, the simulation-based-design method is introduced at first, and the verification of the numerical calculation of internal-external coupling flow with liquid tanks is done then. Finally, the filling ratio of the anti-rolling liquid tank and the installation angle of the anti-rolling fins are optimized to reduce the roll motion amplitude of the hull section to the greatest extent under the combined action of the two anti-rolling devices. Optimization results show that the roll motion amplitude of box-shaped hull section can be successfully reduced by reasonably designing the two anti-rolling devices, which can be a reference to the future design of the fishing ship and other ships with anti-rolling devices.
基金Projects supported by the National Key Research and Development Program of China(Grant Nos.2019YFB1704200,2019YFC0312400)the National Natural Science Foundation of China(Grant Nos.51879159,51909160).
文摘For complex aerodynamic and hydrodynamic problems,the analysis of vortex is very important.The Liutex method is an eigenvalue-based method which is local,accurate,and unique,which can give an accurate definition of vortex,so the control of vortex can be implemented and effectively guaranteed.Based on Liutex method,two methodologies of centripetal force model and counter-rotation force model were proposed to illustrate the vortex dynamics and possibly strengthen or weaken the vortices.In this paper,the Liutex-based centripetal force model is applied by adding a source term to the Navier-Stokes equations.In order to investigate the influence of the constructed Liutex force model on the 3-dimensional flow around a slow-fat ship,the calm-water drag calculation result of JBC ship is regarded as the initial flow field,and the new resistance and wake performances of the ship are obtained after applying the centripetal force model to the flow field with different strengths.Several views of the comparisons of the new steady flow fields are shown,and the parametric study results indicate that the Liutex-based centripetal force model can effectively change the resistance and wake performances of the JBC ship,which provides a new idea and theoretical basis for the comprehensive hydrodynamic performance optimization of the ship hull.