In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ...In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.展开更多
Improper design of volute geometry can be the main cause that leads to unsteady pressure pulsation and radial force in pumps. Therefore, it is important to understand the influence of volute geometrical parameters on ...Improper design of volute geometry can be the main cause that leads to unsteady pressure pulsation and radial force in pumps. Therefore, it is important to understand the influence of volute geometrical parameters on hydrodynamic characteristics of pump and the mechanism. However, the existing studies are limited to investigate the influence of only one or two volute geometrical parameters each time, and a systematic study of the influence of the combinations of different volute geometrical parameters on the pump's hydrodynamic characteristics is missing. In this paper, a study on the understanding of the influence of volute geometrical variations on hydrodynamic characteristics of a high speed circulator pump by using computational fluid dynamics(CFD) technology is presented. Five main volute geometrical parameters D3, A8, a0, j0 and Rt are selected and 25 different volute configurations are generated by using design of experiments(DOE) method. The 3D unsteady flow numerical simulations, which are based on the SST k-w turbulence model and sliding mesh technique provided by CFX, are executed on the 25 different volute configurations. The hydraulic performance, pressure pulsation and unsteady radial force inside the pump at design condition are obtained and analyzed. It has been found that volute geometrical parameters D3 and A8 are major influence factors on hydrodynamic characteristics of the pump, while a0, j0 and Rt are minor influence factors. The minimum contribution from both D3 and A8 is 58% on head, and maximum contribution from both D3 and A8 is 90% on pressure pulsation. Regarding the pressure pulsation intensity, two peaks can be found. One is in the tongue area and the other is in the diffusor area. The contributions are around 60% from tongue and 25% from diffusor, respectively. The amplitude of pressure pulsation has a quadratic polynomial functional relationship with respect to D3/D2 and A8/A(10), and fluctuating level of radial force has a quadratic polynomial functional relationship with respect to D3/D2. While for the other volute parameters a0, j0 and Rt, no special function has been found related to pressure pulsation and radial force. The presented work could be a useful guideline in engineering practice when designing a circulator pump with low hydrodynamic force.展开更多
A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, ...A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, a step by step methodology is taken to study the effects of the interactions among the independent factors considered on the performance variables. A multilevel full factorial design with three levels of the two factors and five levels of the third factor has been studied. Various statistical models such as the linear, two-factor interaction, quadratic, and cubic models are tested. The model has been developed to predict responses, viz., average solids holdup and solids circulation rate. The validity of the developed regression model is verified using the analysis of variance. Furthermore, the model developed was compared with an experimental dataset to assess its adequacy and reliability. This detailed statistical design methodology for non-linear systems considered here provides a very important tool for design and optimization in a cost-effective approach展开更多
The waters renewal of the fishery harbor of Nea Krini is presented here. The harbor is located at the east Thessaloniki Gulf (NE Thermaikos Gulf, Greece). The main research point is focused on the environmental state ...The waters renewal of the fishery harbor of Nea Krini is presented here. The harbor is located at the east Thessaloniki Gulf (NE Thermaikos Gulf, Greece). The main research point is focused on the environmental state of the harbor which is under construction. Under that point of view, the description of a two-dimensional, depth average, hydrodynamic model follows, in order to simulate the wind generated circulation of waters, initially on the greater area of Thermaikos Gulf and then on the coastal basin of the fishing harbor. The renewal of waters in the harbor’s basin is subsequently studied. Tidal effects on the waters’ renewal are also studied. The calculation of the concentration of Biochemically Oxygen Demand (BOD) in the fishing harbor for the average time of waters’ renewal is then examined for three different cases, concerning the existence and operation of openings on the body of the groins. Finally, the analysis of the results shows a good environmental state of the harbor. It is obvious that the use of numerical models for different scenarios of engineering and design approaches can lead to the prognosis of hydrodynamic and environmental sate of a harbor’s basin so that the best possible technical design can be adopted.展开更多
基金The National Natural Science Foundation of China(No.51209040,51279134)the Natural Science Foundation of Jiangsu Province(No.BK2012341)+1 种基金the Fundamental Research Funds for the Central Universities(No.SJLX_0087)the Research Fund of Nanjing Hydraulic Research Institute(No.Y213012)
文摘In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.
基金Supported by National Natural Science Foundation of China(Grant No.51239005)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ15E090004,LQ15E090005)Project of Zhejiang Education,China(Grant No.Y201432222)
文摘Improper design of volute geometry can be the main cause that leads to unsteady pressure pulsation and radial force in pumps. Therefore, it is important to understand the influence of volute geometrical parameters on hydrodynamic characteristics of pump and the mechanism. However, the existing studies are limited to investigate the influence of only one or two volute geometrical parameters each time, and a systematic study of the influence of the combinations of different volute geometrical parameters on the pump's hydrodynamic characteristics is missing. In this paper, a study on the understanding of the influence of volute geometrical variations on hydrodynamic characteristics of a high speed circulator pump by using computational fluid dynamics(CFD) technology is presented. Five main volute geometrical parameters D3, A8, a0, j0 and Rt are selected and 25 different volute configurations are generated by using design of experiments(DOE) method. The 3D unsteady flow numerical simulations, which are based on the SST k-w turbulence model and sliding mesh technique provided by CFX, are executed on the 25 different volute configurations. The hydraulic performance, pressure pulsation and unsteady radial force inside the pump at design condition are obtained and analyzed. It has been found that volute geometrical parameters D3 and A8 are major influence factors on hydrodynamic characteristics of the pump, while a0, j0 and Rt are minor influence factors. The minimum contribution from both D3 and A8 is 58% on head, and maximum contribution from both D3 and A8 is 90% on pressure pulsation. Regarding the pressure pulsation intensity, two peaks can be found. One is in the tongue area and the other is in the diffusor area. The contributions are around 60% from tongue and 25% from diffusor, respectively. The amplitude of pressure pulsation has a quadratic polynomial functional relationship with respect to D3/D2 and A8/A(10), and fluctuating level of radial force has a quadratic polynomial functional relationship with respect to D3/D2. While for the other volute parameters a0, j0 and Rt, no special function has been found related to pressure pulsation and radial force. The presented work could be a useful guideline in engineering practice when designing a circulator pump with low hydrodynamic force.
文摘A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, a step by step methodology is taken to study the effects of the interactions among the independent factors considered on the performance variables. A multilevel full factorial design with three levels of the two factors and five levels of the third factor has been studied. Various statistical models such as the linear, two-factor interaction, quadratic, and cubic models are tested. The model has been developed to predict responses, viz., average solids holdup and solids circulation rate. The validity of the developed regression model is verified using the analysis of variance. Furthermore, the model developed was compared with an experimental dataset to assess its adequacy and reliability. This detailed statistical design methodology for non-linear systems considered here provides a very important tool for design and optimization in a cost-effective approach
文摘The waters renewal of the fishery harbor of Nea Krini is presented here. The harbor is located at the east Thessaloniki Gulf (NE Thermaikos Gulf, Greece). The main research point is focused on the environmental state of the harbor which is under construction. Under that point of view, the description of a two-dimensional, depth average, hydrodynamic model follows, in order to simulate the wind generated circulation of waters, initially on the greater area of Thermaikos Gulf and then on the coastal basin of the fishing harbor. The renewal of waters in the harbor’s basin is subsequently studied. Tidal effects on the waters’ renewal are also studied. The calculation of the concentration of Biochemically Oxygen Demand (BOD) in the fishing harbor for the average time of waters’ renewal is then examined for three different cases, concerning the existence and operation of openings on the body of the groins. Finally, the analysis of the results shows a good environmental state of the harbor. It is obvious that the use of numerical models for different scenarios of engineering and design approaches can lead to the prognosis of hydrodynamic and environmental sate of a harbor’s basin so that the best possible technical design can be adopted.