Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ...Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.展开更多
Efficient light absorption and trapping are of vital importance for the solar water evaporation by hydrogel-based photothermal conversion materials.Conventional strategies are focused on the development of the composi...Efficient light absorption and trapping are of vital importance for the solar water evaporation by hydrogel-based photothermal conversion materials.Conventional strategies are focused on the development of the composition and structure of the hydrogers internal network.In our point of view,the importance of the surface structure of hydrogel has usually been underestimated or ignored.Here inspired by the excellent absorbance and water transportation ability of biological surface structure,the hierarchical structured hydrogel evaporators(HSEs)increased the light absorption,trapping,water transportation and water-air interface,which is the beneficial photothermal conversion and water evaporation.The HSEs showed a rapid evaporation rate of 1.77 kg·m^(-2)·h^(-1)at about 92%energy efficiency under one sun(1 kW·m^(-2)).Furthermore,the superhydrophilic window device was used in this work to collect the condensed water,which avoids the light-blocking caused by the water mist formed by the small droplets and the problem of the droplets stick on the device dropping back to the bulk water.Integrated with the excellent photothermal conversion hydrogel and superhydrophilic window equipment,this work provides efficient evaporation and desalination of hydrogel-based solar evaporators in practical large-scale applications.展开更多
Simple preparation of stimuli-responsive hydrogels with good mechanical properties and mild stimuliresponsiveness is essential for their applications as smart soft robots. Mechanically strong Janus poly(Nisopropylacr...Simple preparation of stimuli-responsive hydrogels with good mechanical properties and mild stimuliresponsiveness is essential for their applications as smart soft robots. Mechanically strong Janus poly(Nisopropylacrylamide)/graphene oxide(PNIPAM/GO) nanocomposite hydrogels with stimuli-responsive bending behaviors are prepared through a simple one-step method by using molds made of a Teflon plate and a glass plate. Residual oxygen in the air bubbles on the Teflon plate surface affects the polymerization and hence the cross-linking density, leading to the different swelling/deswelling rates of the two sides of the gels. Therefore, the hydrogels exhibit bending/unbending behaviors upon heating/cooling in water. The incorporation of GO nanosheets dramatically enhances the mechanical properties of Janus hydrogels. Meanwhile, the photo-responsive property of the GO nanosheets also imparts the hydrogels with remotecontrollable deformation under IR irradiation. The application of the Janus PNIPAM/GO hydrogels as thermo-responsive grippers is demonstrated.展开更多
基金the National Natural Science Foundation of China(Grant No.52076028).
文摘Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
基金We thank Prof.Cunming Yu and Dr.Xiao Xiao for providing COMSLO simulation.This work was supported by the National Natural Science Funds for Distinguished Young Scholar(No.21725401)the National Key R&D Program of China(No.2017YFA0207800)+1 种基金the 111 project(B14009)the Fundamental Research Funds for the Central Universities.
文摘Efficient light absorption and trapping are of vital importance for the solar water evaporation by hydrogel-based photothermal conversion materials.Conventional strategies are focused on the development of the composition and structure of the hydrogers internal network.In our point of view,the importance of the surface structure of hydrogel has usually been underestimated or ignored.Here inspired by the excellent absorbance and water transportation ability of biological surface structure,the hierarchical structured hydrogel evaporators(HSEs)increased the light absorption,trapping,water transportation and water-air interface,which is the beneficial photothermal conversion and water evaporation.The HSEs showed a rapid evaporation rate of 1.77 kg·m^(-2)·h^(-1)at about 92%energy efficiency under one sun(1 kW·m^(-2)).Furthermore,the superhydrophilic window device was used in this work to collect the condensed water,which avoids the light-blocking caused by the water mist formed by the small droplets and the problem of the droplets stick on the device dropping back to the bulk water.Integrated with the excellent photothermal conversion hydrogel and superhydrophilic window equipment,this work provides efficient evaporation and desalination of hydrogel-based solar evaporators in practical large-scale applications.
基金financially supported by the National Natural Science Foundation of China(No.21274013)
文摘Simple preparation of stimuli-responsive hydrogels with good mechanical properties and mild stimuliresponsiveness is essential for their applications as smart soft robots. Mechanically strong Janus poly(Nisopropylacrylamide)/graphene oxide(PNIPAM/GO) nanocomposite hydrogels with stimuli-responsive bending behaviors are prepared through a simple one-step method by using molds made of a Teflon plate and a glass plate. Residual oxygen in the air bubbles on the Teflon plate surface affects the polymerization and hence the cross-linking density, leading to the different swelling/deswelling rates of the two sides of the gels. Therefore, the hydrogels exhibit bending/unbending behaviors upon heating/cooling in water. The incorporation of GO nanosheets dramatically enhances the mechanical properties of Janus hydrogels. Meanwhile, the photo-responsive property of the GO nanosheets also imparts the hydrogels with remotecontrollable deformation under IR irradiation. The application of the Janus PNIPAM/GO hydrogels as thermo-responsive grippers is demonstrated.