期刊文献+
共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
Fluorinated semi-interpenetrating polymer networks for enhancing the mechanical performance and storage stability of polymer-bonded explosives by controlling curing and phase separation rates
1
作者 Chao Deng Huihui Liu +1 位作者 Yongping Bai Zhen Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期58-66,共9页
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare... Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount. 展开更多
关键词 semi-interpenetrating polymer networks FLUOROPOLYMER Curing rate Phase separation rate Polymer-bonded explosives
下载PDF
Anion exchange membranes with a semi-interpenetrating polymer network using 1,6-dibromohexane as bifunctional crosslinker
2
作者 Aijie Li Zhanliang Wang +6 位作者 Zhihao Si Lu Lu Peipei Huang Jinhong Liu Songyuan Yao Peiyong Qin Xinmiao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期199-208,共10页
An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of A... An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs. 展开更多
关键词 Anion exchange membrane Polyvinylidene difluoride ELECTRODIALYSIS semi-interpenetrating polymer networks
下载PDF
Semi-Interpenetrating Novolac-Epoxy Thermoset Polymer Networks Derived from Plant Biomass 被引量:1
3
作者 Mehul Barde Yusuf Celikbag +2 位作者 Brian Via Sushil Adhikari Maria LAuad 《Journal of Renewable Materials》 SCIE 2018年第7期724-736,共13页
Bio-based phenol-formaldehyde polymer (BioNovolac) was developed by reacting molar excess of bio-oil/phenolwith formaldehyde in acidic medium. Glycidyl 3,5-diglycidoxybenzoate (GDGB), was prepared by directglycidylati... Bio-based phenol-formaldehyde polymer (BioNovolac) was developed by reacting molar excess of bio-oil/phenolwith formaldehyde in acidic medium. Glycidyl 3,5-diglycidoxybenzoate (GDGB), was prepared by directglycidylation of α-resorcylic acid (RA), a naturally occurring phenolic monomer. GDGB was crosslinked in thepresence of BioNovolac by anionic polymerization. Fourier transform infrared spectroscopy (FTIR) confirmedthe formation of semi-interpenetrating polymer networks. The glass transition temperature and moduli of biobasedcrosslinked systems were observed to increase with increasing GDGB content. Active chain density andmass retention measured by dynamic mechanical analysis (DMA) and Soxhlet extraction, respectively, indicated ahigh crosslink density of the cured networks. Scanning electron microscopy (SEM) images depicted thehomogeneity of the bulk phase. The preparation of bio-based epoxy-novolac thermoset network resulted inreduced consumption of petroleum-based chemicals. 展开更多
关键词 Fast pyrolysis BIO-OIL BioNovolac semi-interpenetrating polymer networks
下载PDF
Fluorescent Double Network Hydrogels with Ionic Responsiveness and High Mechanical Properties for Visual Detection
4
作者 郑湾 LIU Lerong +5 位作者 Lü Hanlin WANG Yuhang LI Feihu ZHANG Yixuan 陈艳军 WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期487-496,共10页
We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,wh... We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection. 展开更多
关键词 visual detection ionic responsiveness fluorescent hydrogels double network hydrogels mechanical property
下载PDF
Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride) 被引量:1
5
作者 Xinming Du Hongyu Zhang +1 位作者 Yongjiang Yuan Zhe Wang 《Green Energy & Environment》 SCIE CSCD 2021年第5期743-750,共8页
The semi-interpenetrating network anion exchange membranes(AEMs)based on quaternized polyvinyl alcohol(QPVA)and poly(-diallyldimethylammonium chloride)(PDDA)are synthesized.The chemical cross-linking structure is form... The semi-interpenetrating network anion exchange membranes(AEMs)based on quaternized polyvinyl alcohol(QPVA)and poly(-diallyldimethylammonium chloride)(PDDA)are synthesized.The chemical cross-linking structure is formed between hydroxyl groups of QPVA and aldehyde groups of glutaraldehyde(GA),which makes PDDA more stable embed in the QPVA matrix and also improves the mechanical properties and dimensional stability of AEMs.Due to the phase separation phenomenon of AEMs swelling in water,a microporous structure may be formed in the membrane,which reduces the transmission resistance of hydroxide ions and provides a larger space for the transfer of hydroxide ions,thus improving the conductivity.The ring structure of PDDA is introduced as a cationic group to transfer hydroxide ions,and shields the nucleophilic attack of the hydroxide ions through the steric hindrance effect,which improves alkaline stability.The hydroxide conductivity of semi-interpenetrating network membrane(QPVA/PDDA0.5-GA)is 36.5 mS cm^(-1) at 60℃.And the membrane of QPVA/PDDA0.5-GA exhibits excellent mechanical property with maximum tensile strength of 19.6 MPa.After immersing into hot 3 mol L^(-1) NaOH solutions at 60℃ for 300 h,the OHconductivity remains 78%of its initial value.The semi-interpenetrating network AEMs with microporous structure exhibit good ionic conductivity,mechanical strength and alkaline durability. 展开更多
关键词 Anion exchange membrane semi-interpenetrating network CROSS-LINKED Microporous structure
下载PDF
Vinylic-addition Polynorbornene-based Anion-Exchange Membranes with Semi-Interpenetrating Polymer Networks for Water Electrolysis
6
作者 Ting Wang Yu Wang Wei You 《Chinese Journal of Polymer Science》 SCIE EI CAS 2024年第12期1888-1896,I0006,共10页
Anion-exchange membranes(AEMs)with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications.During the past decades,polynorbornene(PNB)-based AEMs have... Anion-exchange membranes(AEMs)with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications.During the past decades,polynorbornene(PNB)-based AEMs have shown excellent performance due to their saturated all-carbon-based backbones and diverse strategies to prepare cross-linked membranes.However,nearly all previously reported PNB-based AEMs rely on the alkyl-substituted norbornene monomers,whose low-yielding synthesis leads to high-cost of the AEMs.In addition,the crosslinked PNB-based AEMs usually suffered from mechanical brittleness.Herein,we propose a novel semi-interpenetrating polymer network(s-IPN)strategy to simultaneously enhance mechanical modulus and ionic conductivity,while using commercial 5-vinyl-2-norbornene(VNB)as the single norbornene derivatives to prepare high-performance AEMs.A diallylphenol quaternary ammonium salt was used for photo-induced crosslinking with poly-VNB and various dithiols to produce AEMs with s-IPN structures.The resultant membranes have excellent hydroxide conductivities and alkaline stability in 1 mol/L KOH at 80℃,and are successfully applied in alkaline anion-exchange membrane water electrolyzers to stably operateforover150h. 展开更多
关键词 Anion-exchange membranes semi-interpenetrating polymer network Vinylic-addition polynorbornene Thiol-ene click reaction Alkaline waterelectrolysis
原文传递
A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties 被引量:3
7
作者 Lei Zhu Chun-ming Xiong +3 位作者 Xiao-fen Tang Li-jun Wang Kang Peng Hai-yang Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第3期350-358,368,共10页
Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into t... Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly. 展开更多
关键词 DOUBLE network hydrogel WEAK POLYELECTROLYTE High mechanical strength Shape MEMORY properties
下载PDF
A double-network hydrogel for the dynamic compression of the lumbar nerve root 被引量:6
8
作者 Hui Li Hua Meng +4 位作者 Yan-Yu Yang Jia-Xi Huang Yong-Jie Chen Fei Yang Jia-Zhi Yan 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第9期1724-1731,共8页
Current animal models of nerve root compression due to lumbar disc herniation only assess the mechanical compression of nerve roots and the inflammatory response. Moreover, the pressure applied in these models is stat... Current animal models of nerve root compression due to lumbar disc herniation only assess the mechanical compression of nerve roots and the inflammatory response. Moreover, the pressure applied in these models is static, meaning that the nerve root cannot be dynamically compressed. This is very different from the pathogenesis of lumbar disc herniation. In this study, a chitosan/polyacrylamide double-network hydrogel was prepared by a simple two-step method. The swelling ratio of the double-network hydrogel increased with prolonged time, reaching 140. The compressive strength and compressive modulus of the hydrogel reached 53.6 and 0.34 MPa, respectively. Scanning electron microscopy revealed the hydrogel's crosslinked structure with many interconnecting pores. An MTT assay demonstrated that the number of viable cells in contact with the hydrogel extracts did not significantly change relative to the control surface. Thus, the hydrogel had good biocompatibility. Finally, the double-network hydrogel was used to compress the L4 nerve root of male sand rats to simulate lumbar disc herniation nerve root compression. The hydrogel remained in its original position after compression, and swelled with increasing time. Edema appeared around the nerve root and disappeared 3 weeks after operation. This chitosan/polyacrylamide double-network hydrogel has potential as a new implant material for animal models of lumbar nerve root compression. All animal experiments were approved by the Animal Ethics Committee of Neurosurgical Institute of Beijing, Capital Medical University, China(approval No. 201601006) on July 29, 2016. 展开更多
关键词 CHITOSAN double-network hydrogel dynamic compression lumbar disc herniation micro-MRI nerve root peripheral neuropathic pain POLYACRYLAMIDE
下载PDF
Progress of High Strength Double-Network Hydrogels
9
作者 Ren Jie 《石化技术》 CAS 2018年第11期112-112,共1页
The design principles and preparation methods of the double-network hydrogels are reviewed. In addition,the application of the double-network hydrogels in different fields is also introduced.
关键词 《石化技术》 期刊 编辑工作 发行工作
下载PDF
单宁酸改性互穿网络水凝胶促进断裂跟腱术后的组织重塑
10
作者 张博 张振 江东 《中国组织工程研究》 CAS 北大核心 2025年第4期721-729,共9页
背景:跟腱断裂术后的再生与重塑是临床治疗的难点,组织工程水凝胶材料为促进跟腱修复提供了可能。目的:探究单宁酸改性互穿网络水凝胶对大鼠断裂跟腱组织再生与重塑的作用。方法:①通过蓝光照射及CaSO4溶液浸泡交联制备单宁酸改性互穿... 背景:跟腱断裂术后的再生与重塑是临床治疗的难点,组织工程水凝胶材料为促进跟腱修复提供了可能。目的:探究单宁酸改性互穿网络水凝胶对大鼠断裂跟腱组织再生与重塑的作用。方法:①通过蓝光照射及CaSO4溶液浸泡交联制备单宁酸改性互穿网络水凝胶,表征水凝胶的微观形貌、力学性能、黏附性能、体外释药性能与生物相容性。②取30只SD大鼠,采用随机数字表法分为假手术组、手术组与水凝胶组,每组10只,后2组建立右后肢跟腱断裂模型,手术组采用改良Kessler法将断裂跟腱重新缝合,水凝胶组采用相同术式缝合断裂跟腱后将单宁酸改性互穿网络水凝胶贴片完全缠绕包裹于断端接合处。术后4周,对断裂跟腱进行影像学检查、组织学评价、生物力学测试及炎症因子水平检测。结果与结论:①扫描电镜下可见单宁酸改性互穿网络水凝胶呈多孔微观结构,孔径为3-10μm,并且水凝胶具备良好的体外释药性能、黏附强度与拉伸强度;CCK-8检测与活/死染色显示,该水凝胶对大鼠骨髓间充质干细胞增殖活性无明显影响,具备良好的生物相容性。②MRI成像显示,与手术组比较,水凝胶组大鼠跟腱呈均一低信号,跟腱前后径厚度减小,与周围组织分界更为明确,表现更接近假手术组。苏木精-伊红与Masson染色显示,手术组大鼠跟腱纤维排列松散混乱,细胞密度增加且排布杂乱,伴有明显炎性细胞浸润,部分区域出现腱内骨化;水凝胶组大鼠跟腱纤维排列有序,细胞密度降低且排布规整,炎性细胞浸润明显减少。手术组大鼠跟腱的拉伸强度低于假手术组(P<0.05),水凝胶组大鼠跟腱的拉伸强度高于手术组(P<0.05)。与假手术组比较,手术组大鼠跟腱中白细胞介素1β、白细胞介素6及肿瘤坏死因子α质量浓度及mRNA表达升高(P<0.05);与手术组比较,水凝胶组3种炎症因子水平及mRNA表达降低。③结果表明,单宁酸改性互穿网络水凝胶可显著抑制局部炎症反应、促进断裂跟腱组织重塑。 展开更多
关键词 单宁酸 水凝胶 互穿网络 跟腱断裂 组织重塑 组织再生
下载PDF
Tough Semi-interpenetrating Polyvinylpyrrolidone/Polyacrylamide Hydrogels Enabled by Bioinspired Hydrogen-bonding Induced Phase Separation
11
作者 Qiong-Jun Xu Zhao-Yang Yuan +6 位作者 Chang-Cheng Wang Hao Liang Yu Shi Hai-Tao Wu Hu Xu Jing Zheng Jin-Rong Wu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第5期591-603,I0006,共14页
Semi-interpenetrating(semi-IPN)hydrogels formed by the continuous interpenetration of cross-linked polymer network and linear non-crosslinked polymer with multifunctionality are widely used in biomedical and other fie... Semi-interpenetrating(semi-IPN)hydrogels formed by the continuous interpenetration of cross-linked polymer network and linear non-crosslinked polymer with multifunctionality are widely used in biomedical and other fields.However,the negative impact of linear polymer on the homogeneity of the cross-linked network often leads to a decrease in the mechanical properties of semi-IPN hydrogels and severely limits their applications.Herein,a bioinspired hydrogen-bonding induced phase separation strategy is presented to construct the tough semi-IPN polyvinylpyrrolidone/polyacrylamide hydrogels(named PVP/PAM hydrogels),including the linear polymer polyvinylpyrrolidone(PVP)and cross-linked polyacrylamide(PAM)network.The resultant PVPx/PAM hydrogels exhibit unique phase separation induced by the hydrogen bonding between PVP and PAM and affected by the amount of substance of PVP.Meanwhile,the phase separation of PVPx/PAM hydrogels results in excellent mechanical properties with a strain of 2590%,tensile strength of 0.28 MPa and toughness of 2.17 MJ/m^(3).More importantly,the hydrogen bonding between PVP and PAM firstly disrupts to dissipate energy under external forces,so the PVPx/PAM hydrogels exhibit good self-recovery properties and outperform chemically cross-linked PAM hydrogels in impact resistance and damping applications.It is believed that the PVPx/PAM hydrogels with hydrogen-bonding induced phase separation possess more potential application prospects. 展开更多
关键词 TOUGH semi-interpenetrating networks Polyvinylpyrrolidone/polyacrylamide hydrogelS Phase separation
原文传递
Crosslink Polymerization Kinetics and Mechanism of Hydrogels Composed of Acrylic Acid and 2-Acrylamido-2-methylpropane Sulfonic Acid 被引量:6
12
作者 廖列文 岳航勃 崔英德 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期285-291,共7页
Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N... Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N'-methylene bis(acrylamide) as crosslinker.It was found that the reaction for the crosslink polymerization of AA/AMPS hydrogels had orders of 0.58,1.14,and 0.86 with respect to the initiator,AMPS,and AA,respectively.From the Arrhenius plots,the activation energy of the crosslink polymerization was found to be about 140 and 89 kJ·mol-1 in the presence and absence of the crosslinker,respectively,in the temperature range from 45 to 65 °C.It was noted that the crosslinker had effects on the reaction order of the initiator and the activation energy due to the formation of cross-linked networks,which was verified by Fourier transfer infrared (FTIR) spectrum.To further confirm the influences of the cross-linked network structure on kinetic parameters of the crosslink polymerization,a mechanism was proposed,which highlights the different termination routes between free radical polymerization and crosslink polymerization.These results suggest that dilatometry provides a convenient tool for crosslink polymeri-zation study,and confirm that the cross-linked networks are formed in the crosslink polymerization. 展开更多
关键词 hydrogel POLYMERIZATION cross-linked networks kinetics dilatometry
下载PDF
Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications 被引量:6
13
作者 Dan Zeng Shihong Shen Daidi Fan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第2期308-320,共13页
With the changes in the modern disease spectrum,pressure ulcers,diabetic feet,and vascular-derived diseases caused refractory wounds is increasing rapidly.The development of wound dressings has partly improved the eff... With the changes in the modern disease spectrum,pressure ulcers,diabetic feet,and vascular-derived diseases caused refractory wounds is increasing rapidly.The development of wound dressings has partly improved the effect of wound management.However,traditional wound dressings can only cover the wound and block bacteria,but are generally powerless to recurrent wound infection and tissue healing.There is an urgent need to develop a new type of wound dressing with comprehensive performance to achieve multiple effects such as protecting the wound site from the external environment,absorbing wound exudate,anti-inflammatory,antibacterial,and accelerating wound healing process.Hydrogel wound dressings have the aforementioned characteristics,and can keep the wound in a moist environment because of the high water content,which is an ideal choice for wound treatment.This review introduces the wound healing process and the development and performance advantages of hydrogel wound dressings.The choice of different preparation materials gives the particularities of different hydrogel wound dressings.It also systematically explains the main physical and chemical crosslinking methods for hydrogel synthesis.Besides,in-depth discussion of four typical hydrogel wound dressings including double network hydrogels,nanocomposite hydrogels,drug-loaded hydrogels and smart hydrogels fully demonstrates the feasibility of developing hydrogels as wound dressing products and their future development trends. 展开更多
关键词 hydrogelS Wound dressing Molecular design Crosslinked networks Biomedical applications
下载PDF
A crosslinking hydrogel binder for high-sulfur content S@pPAN cathode in rechargeable lithium batteries 被引量:1
14
作者 Huanhuan Yuan Cheng Guo +4 位作者 Jiahang Chen Huichao Lu Jun Yang Yanna Nuli Jiulin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期360-367,共8页
High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode deliv... High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode delivered superior electrochemical performance.However,the sulfur content of S@pPAN is relatively low(<50 wt%),which significantly limits the energy density.Herein,a hydrogel SA-Cu binder was proposed with a crosslinking network constructed by Cu^(2+) ions.The introduction of Cu^(2+) ions enabled excellent electrochemical behaviors of S@pPAN cathode even with high sulfur content of 52.6 wt% via chemical interaction with sulfur and polysulfide.Moreover,a favorable cathode interphase was formed containing electrochemically active and conductive CuSx.S@pPAN/SA-Cu exhibited a high sulfur utilization of 85.3%,long cycling stability over 1000 cycles and remarkable capacity of 1200 mAh g_(s)^(-1) even at10 C.Furthermore,ascribed to the improved electrode structure,high-loading electrode(sulfur loading:4 mg cm^(-2)) displayed stable cycling with areal capacity of 5.26 mAh cm^(-2)(1315 mAh g_(s)^(-1)) after 40 cycles.This study provides new directions to prepare high-sulfur content and high-loading S@pPAN cathode for higher energy density. 展开更多
关键词 hydrogel binder Crosslinking network Chemical binding agents High sulfur content Lithium-sulfur battery
下载PDF
Semi-interpenetrating polymer networks toward sulfonated poly(ether ether ketone) membranes for high concentration direct methanol fuel cell 被引量:1
15
作者 Xupo Liu Yunfeng Zhang +6 位作者 Shaofeng Deng Cuicui Li Jiaming Dong Jiaying Wang Zehui Yang Deli Wang Hansong Cheng 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第2期299-304,共6页
Low methanol permeability of proton exchange membranes (PEMs) is greatly important for direct methanol fuel cells (DMFCs). Here, sulfonated poly (ether ether ketone) (SPEEK) based semiinterpenetrating polymer networks... Low methanol permeability of proton exchange membranes (PEMs) is greatly important for direct methanol fuel cells (DMFCs). Here, sulfonated poly (ether ether ketone) (SPEEK) based semiinterpenetrating polymer networks (semi-IPNs) are successfully prepared by interpenetrating SPEEK into the in-situ synthesized crosslinking networks. The polymeric networks are formed by the covalent bonds between bromobenzyl groups of bro mo methylated poly (phenylene oxide) and amine groups of diamine linkers as well as the ionic bonds between amine species and sulfonated groups. Two linkers without and with sulfonated groups are applied to fabricate the semi-IPNs. The core properties of the membranes, like phase separation, water uptake, proton conductivity and methanol permeability, are systematically studied and compared. The DMFCs assembled by using the semi-IPN membranes display better performance than Nafion 117 in high concentration methanol solutions. The present work provides a facile way to prepare PEMs with enhanced DMFC performance. 展开更多
关键词 Direct METHANOL fuel cell Proton exchange membrane semi-interpenetrating polymer networks SULFONATED poly(ether ETHER ketone) Bromomethylated poly(phenylene oxide)
原文传递
Cell Growth and Desorption on the Surface of Temperature-sensitive Semi-IPNs Hydrogels Based on Silk Sericin 被引量:1
16
作者 李学伟 陈莉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期907-910,共4页
Semi-interpenetrating (semi-IPNs) hydrogels containing biocompatible silk sericin (SS) and poly(N-isopropylacrylamide)(PNIPAM) were prepared as novel cellular matrices. Their maximum swelling degree and basic ... Semi-interpenetrating (semi-IPNs) hydrogels containing biocompatible silk sericin (SS) and poly(N-isopropylacrylamide)(PNIPAM) were prepared as novel cellular matrices. Their maximum swelling degree and basic characteristics for biomedical applications such as mouse ?broblasts (L929) cell proliferation and desorption were investigated. The results showed that the incorporation of high hydrophilic SS into PNIPAM hydrogel increased the maximum swelling degree of the semi-IPNs hydrogels, and the adhesion and growth of the L929 on semi-IPNs hydrogels were at least comparable to, or even better than, that on conventional PNIPAM hydrogel. In addition, L929 cells were found to detach from the hydrogels surface naturally by controlling environmental temperature. These results suggest great potential of semi-IPNs hydrogels in tissue engineering. 展开更多
关键词 semi-interpenetrating hydrogel biocompatible silk sericin N-isopropylacrylamide
下载PDF
Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)
17
作者 Bing LIU Zhi Lan LIU Ren Xi ZHUO 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第10期1377-1380,共4页
Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabrica... Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FF-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM. 展开更多
关键词 hydrogel interpenetrating polymer network PH-SENSITIVITY konjac glucomannan poly(acrylic acid).
下载PDF
Swelling Behaviors of Polyaniline-Poly(Acrylic Acid) Hydrogels
18
作者 张幼维 赵炯心 +2 位作者 厉啸峰 陶勇 吴承训 《Journal of Donghua University(English Edition)》 EI CAS 2005年第2期100-104,共5页
Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline (An) and ammonium persulfate (APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, ch... Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline (An) and ammonium persulfate (APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, chemical ion bonds and hydrogen bonds were prepared. The swelling properties of the hydrogels in solutions of different pH values (adjusted by adding NaOH or HCI) were studied. All the hydrogels prepared have similar swelling curves (the curves of equilibrium swelling ratio vs. pH value) and reach their maximum swelling at pH of 8 - 10. The maximum swelling ratio of the hydrogels is dependent on composition, including molecular weight of PAA, polymer content of the hydrogel, and molar ratios of AA to An, APS to An, and NaOH to AA, And the compositional dependence of the swelling capacity of PAn-PAA hydrogels was also studied. 展开更多
关键词 Poly (acrylic acid) POLYANILINE hydrogel semi-interpenetrating SWELLING
下载PDF
Improving physical properties of poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels via the Hofmeister effect
19
作者 郭蓉蓉 余德帅 +6 位作者 黄一帆 王森 付聪 朱水洪 易佳 王涵淇 林友辉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期6-14,共9页
Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits the... Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits their practical applications.Herein,we present a Hofmeister effect-aided facile strategy to prepare high-performance poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels.Layered montmorillonite nanosheets can not only serve as crosslinking agents to enhance the mechanical properties of the hydrogel but also promote the ion conduction.More importantly,based on the Hofmeister effect,the presence of(NH_(4))_(2)SO_(4)can endow nanocomposite hydrogels with excellent mechanical properties by affecting PVA chains'aggregation state and crystallinity.As a result,the as-prepared nanocomposite hydrogels possess unique physical properties,including robust mechanical and electrical properties.The as-prepared hydrogels can be further assembled into a high-performance flexible sensor,which can sensitively detect large-scale and small-scale human activities.The simple design concept of this work is believed to provide a new prospect for developing robust nanocomposite hydrogels and flexible devices in the future. 展开更多
关键词 nanocomposite hydrogels Hofmeister effect network structure poly(vinyl alcohol) MONTMORILLONITE
下载PDF
Investigation of Swelling/Sorption Characteristics of Highly Swollen AAm/AMPS Hydrogels and Semi IPNs with PEG as Biopotential Sorbent 被引量:1
20
作者 Semiha Kundakci Erdener Karadag Omer Baris Uzüm 《Journal of Encapsulation and Adsorption Sciences》 2011年第1期7-22,共16页
The aim of this study was to investigate the equilibrium swelling and sorption properties of chemically crosslinked copolymeric hydrogels as biopotential sorbent consisting of acrylamide (AAm) and 2-acrylamido-2-methy... The aim of this study was to investigate the equilibrium swelling and sorption properties of chemically crosslinked copolymeric hydrogels as biopotential sorbent consisting of acrylamide (AAm) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). Semi-interpenetrating polymer network (semi IPNs) hydrogel, composed of AAm with AMPS as co-monomer, with poly (ethylene glycol) (PEG) and a multifunctional crosslinker such as trimethylolpropane triacrylate (TMPTA) was prepared. AAm/AMPS hydrogels and AAm/AMPS/PEG semi IPNs were synthesized by free radical solution polymerization by using ammonium persulphate (APS)/N,N,N’,N’-tetramethylethylenediamine (TEMED) as redox initiating pair. Swelling experiments were performed in water, 0.01 M and 0.03 M aqueous urea solutions at 25oC, gravimetrically. The hydrogels showed enormous swelling in aqueous urea/water medium and displayed swelling characteristics that were highly depended on the chemical composition of the hydrogels. FTIR spectroscopy was used to identify the presence of different repeating units in the semi IPNs. Some swelling and diffusion characteristics were calculated for different semi IPNs and hydrogels prepared under various formulations. For sorption of cationic dye, Lauths violet into the hydrogels was studied by batch sorption technique at 25oC. Dye removal capacity, adsorption percentage and partition coefficient of the hydrogels was investigated. Swelling and dye sorption properties of AAm/AMPS hydrogels and AAm/AMPS/PEG semi IPNs were investigated as a function of chemical composition of the hydrogels. 展开更多
关键词 SWELLING hydrogel interpenetrating polymer networks ACRYLAMIDE 2-acrylamido-2-methyl-1-propanesulfonic acid Urea Lauths violet sorption
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部