Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of A...An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs.展开更多
Bio-based phenol-formaldehyde polymer (BioNovolac) was developed by reacting molar excess of bio-oil/phenolwith formaldehyde in acidic medium. Glycidyl 3,5-diglycidoxybenzoate (GDGB), was prepared by directglycidylati...Bio-based phenol-formaldehyde polymer (BioNovolac) was developed by reacting molar excess of bio-oil/phenolwith formaldehyde in acidic medium. Glycidyl 3,5-diglycidoxybenzoate (GDGB), was prepared by directglycidylation of α-resorcylic acid (RA), a naturally occurring phenolic monomer. GDGB was crosslinked in thepresence of BioNovolac by anionic polymerization. Fourier transform infrared spectroscopy (FTIR) confirmedthe formation of semi-interpenetrating polymer networks. The glass transition temperature and moduli of biobasedcrosslinked systems were observed to increase with increasing GDGB content. Active chain density andmass retention measured by dynamic mechanical analysis (DMA) and Soxhlet extraction, respectively, indicated ahigh crosslink density of the cured networks. Scanning electron microscopy (SEM) images depicted thehomogeneity of the bulk phase. The preparation of bio-based epoxy-novolac thermoset network resulted inreduced consumption of petroleum-based chemicals.展开更多
We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,wh...We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.展开更多
The semi-interpenetrating network anion exchange membranes(AEMs)based on quaternized polyvinyl alcohol(QPVA)and poly(-diallyldimethylammonium chloride)(PDDA)are synthesized.The chemical cross-linking structure is form...The semi-interpenetrating network anion exchange membranes(AEMs)based on quaternized polyvinyl alcohol(QPVA)and poly(-diallyldimethylammonium chloride)(PDDA)are synthesized.The chemical cross-linking structure is formed between hydroxyl groups of QPVA and aldehyde groups of glutaraldehyde(GA),which makes PDDA more stable embed in the QPVA matrix and also improves the mechanical properties and dimensional stability of AEMs.Due to the phase separation phenomenon of AEMs swelling in water,a microporous structure may be formed in the membrane,which reduces the transmission resistance of hydroxide ions and provides a larger space for the transfer of hydroxide ions,thus improving the conductivity.The ring structure of PDDA is introduced as a cationic group to transfer hydroxide ions,and shields the nucleophilic attack of the hydroxide ions through the steric hindrance effect,which improves alkaline stability.The hydroxide conductivity of semi-interpenetrating network membrane(QPVA/PDDA0.5-GA)is 36.5 mS cm^(-1) at 60℃.And the membrane of QPVA/PDDA0.5-GA exhibits excellent mechanical property with maximum tensile strength of 19.6 MPa.After immersing into hot 3 mol L^(-1) NaOH solutions at 60℃ for 300 h,the OHconductivity remains 78%of its initial value.The semi-interpenetrating network AEMs with microporous structure exhibit good ionic conductivity,mechanical strength and alkaline durability.展开更多
Anion-exchange membranes(AEMs)with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications.During the past decades,polynorbornene(PNB)-based AEMs have...Anion-exchange membranes(AEMs)with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications.During the past decades,polynorbornene(PNB)-based AEMs have shown excellent performance due to their saturated all-carbon-based backbones and diverse strategies to prepare cross-linked membranes.However,nearly all previously reported PNB-based AEMs rely on the alkyl-substituted norbornene monomers,whose low-yielding synthesis leads to high-cost of the AEMs.In addition,the crosslinked PNB-based AEMs usually suffered from mechanical brittleness.Herein,we propose a novel semi-interpenetrating polymer network(s-IPN)strategy to simultaneously enhance mechanical modulus and ionic conductivity,while using commercial 5-vinyl-2-norbornene(VNB)as the single norbornene derivatives to prepare high-performance AEMs.A diallylphenol quaternary ammonium salt was used for photo-induced crosslinking with poly-VNB and various dithiols to produce AEMs with s-IPN structures.The resultant membranes have excellent hydroxide conductivities and alkaline stability in 1 mol/L KOH at 80℃,and are successfully applied in alkaline anion-exchange membrane water electrolyzers to stably operateforover150h.展开更多
Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into t...Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.展开更多
Current animal models of nerve root compression due to lumbar disc herniation only assess the mechanical compression of nerve roots and the inflammatory response. Moreover, the pressure applied in these models is stat...Current animal models of nerve root compression due to lumbar disc herniation only assess the mechanical compression of nerve roots and the inflammatory response. Moreover, the pressure applied in these models is static, meaning that the nerve root cannot be dynamically compressed. This is very different from the pathogenesis of lumbar disc herniation. In this study, a chitosan/polyacrylamide double-network hydrogel was prepared by a simple two-step method. The swelling ratio of the double-network hydrogel increased with prolonged time, reaching 140. The compressive strength and compressive modulus of the hydrogel reached 53.6 and 0.34 MPa, respectively. Scanning electron microscopy revealed the hydrogel's crosslinked structure with many interconnecting pores. An MTT assay demonstrated that the number of viable cells in contact with the hydrogel extracts did not significantly change relative to the control surface. Thus, the hydrogel had good biocompatibility. Finally, the double-network hydrogel was used to compress the L4 nerve root of male sand rats to simulate lumbar disc herniation nerve root compression. The hydrogel remained in its original position after compression, and swelled with increasing time. Edema appeared around the nerve root and disappeared 3 weeks after operation. This chitosan/polyacrylamide double-network hydrogel has potential as a new implant material for animal models of lumbar nerve root compression. All animal experiments were approved by the Animal Ethics Committee of Neurosurgical Institute of Beijing, Capital Medical University, China(approval No. 201601006) on July 29, 2016.展开更多
The design principles and preparation methods of the double-network hydrogels are reviewed. In addition,the application of the double-network hydrogels in different fields is also introduced.
Semi-interpenetrating(semi-IPN)hydrogels formed by the continuous interpenetration of cross-linked polymer network and linear non-crosslinked polymer with multifunctionality are widely used in biomedical and other fie...Semi-interpenetrating(semi-IPN)hydrogels formed by the continuous interpenetration of cross-linked polymer network and linear non-crosslinked polymer with multifunctionality are widely used in biomedical and other fields.However,the negative impact of linear polymer on the homogeneity of the cross-linked network often leads to a decrease in the mechanical properties of semi-IPN hydrogels and severely limits their applications.Herein,a bioinspired hydrogen-bonding induced phase separation strategy is presented to construct the tough semi-IPN polyvinylpyrrolidone/polyacrylamide hydrogels(named PVP/PAM hydrogels),including the linear polymer polyvinylpyrrolidone(PVP)and cross-linked polyacrylamide(PAM)network.The resultant PVPx/PAM hydrogels exhibit unique phase separation induced by the hydrogen bonding between PVP and PAM and affected by the amount of substance of PVP.Meanwhile,the phase separation of PVPx/PAM hydrogels results in excellent mechanical properties with a strain of 2590%,tensile strength of 0.28 MPa and toughness of 2.17 MJ/m^(3).More importantly,the hydrogen bonding between PVP and PAM firstly disrupts to dissipate energy under external forces,so the PVPx/PAM hydrogels exhibit good self-recovery properties and outperform chemically cross-linked PAM hydrogels in impact resistance and damping applications.It is believed that the PVPx/PAM hydrogels with hydrogen-bonding induced phase separation possess more potential application prospects.展开更多
Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N...Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N'-methylene bis(acrylamide) as crosslinker.It was found that the reaction for the crosslink polymerization of AA/AMPS hydrogels had orders of 0.58,1.14,and 0.86 with respect to the initiator,AMPS,and AA,respectively.From the Arrhenius plots,the activation energy of the crosslink polymerization was found to be about 140 and 89 kJ·mol-1 in the presence and absence of the crosslinker,respectively,in the temperature range from 45 to 65 °C.It was noted that the crosslinker had effects on the reaction order of the initiator and the activation energy due to the formation of cross-linked networks,which was verified by Fourier transfer infrared (FTIR) spectrum.To further confirm the influences of the cross-linked network structure on kinetic parameters of the crosslink polymerization,a mechanism was proposed,which highlights the different termination routes between free radical polymerization and crosslink polymerization.These results suggest that dilatometry provides a convenient tool for crosslink polymeri-zation study,and confirm that the cross-linked networks are formed in the crosslink polymerization.展开更多
With the changes in the modern disease spectrum,pressure ulcers,diabetic feet,and vascular-derived diseases caused refractory wounds is increasing rapidly.The development of wound dressings has partly improved the eff...With the changes in the modern disease spectrum,pressure ulcers,diabetic feet,and vascular-derived diseases caused refractory wounds is increasing rapidly.The development of wound dressings has partly improved the effect of wound management.However,traditional wound dressings can only cover the wound and block bacteria,but are generally powerless to recurrent wound infection and tissue healing.There is an urgent need to develop a new type of wound dressing with comprehensive performance to achieve multiple effects such as protecting the wound site from the external environment,absorbing wound exudate,anti-inflammatory,antibacterial,and accelerating wound healing process.Hydrogel wound dressings have the aforementioned characteristics,and can keep the wound in a moist environment because of the high water content,which is an ideal choice for wound treatment.This review introduces the wound healing process and the development and performance advantages of hydrogel wound dressings.The choice of different preparation materials gives the particularities of different hydrogel wound dressings.It also systematically explains the main physical and chemical crosslinking methods for hydrogel synthesis.Besides,in-depth discussion of four typical hydrogel wound dressings including double network hydrogels,nanocomposite hydrogels,drug-loaded hydrogels and smart hydrogels fully demonstrates the feasibility of developing hydrogels as wound dressing products and their future development trends.展开更多
High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode deliv...High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode delivered superior electrochemical performance.However,the sulfur content of S@pPAN is relatively low(<50 wt%),which significantly limits the energy density.Herein,a hydrogel SA-Cu binder was proposed with a crosslinking network constructed by Cu^(2+) ions.The introduction of Cu^(2+) ions enabled excellent electrochemical behaviors of S@pPAN cathode even with high sulfur content of 52.6 wt% via chemical interaction with sulfur and polysulfide.Moreover,a favorable cathode interphase was formed containing electrochemically active and conductive CuSx.S@pPAN/SA-Cu exhibited a high sulfur utilization of 85.3%,long cycling stability over 1000 cycles and remarkable capacity of 1200 mAh g_(s)^(-1) even at10 C.Furthermore,ascribed to the improved electrode structure,high-loading electrode(sulfur loading:4 mg cm^(-2)) displayed stable cycling with areal capacity of 5.26 mAh cm^(-2)(1315 mAh g_(s)^(-1)) after 40 cycles.This study provides new directions to prepare high-sulfur content and high-loading S@pPAN cathode for higher energy density.展开更多
Low methanol permeability of proton exchange membranes (PEMs) is greatly important for direct methanol fuel cells (DMFCs). Here, sulfonated poly (ether ether ketone) (SPEEK) based semiinterpenetrating polymer networks...Low methanol permeability of proton exchange membranes (PEMs) is greatly important for direct methanol fuel cells (DMFCs). Here, sulfonated poly (ether ether ketone) (SPEEK) based semiinterpenetrating polymer networks (semi-IPNs) are successfully prepared by interpenetrating SPEEK into the in-situ synthesized crosslinking networks. The polymeric networks are formed by the covalent bonds between bromobenzyl groups of bro mo methylated poly (phenylene oxide) and amine groups of diamine linkers as well as the ionic bonds between amine species and sulfonated groups. Two linkers without and with sulfonated groups are applied to fabricate the semi-IPNs. The core properties of the membranes, like phase separation, water uptake, proton conductivity and methanol permeability, are systematically studied and compared. The DMFCs assembled by using the semi-IPN membranes display better performance than Nafion 117 in high concentration methanol solutions. The present work provides a facile way to prepare PEMs with enhanced DMFC performance.展开更多
Semi-interpenetrating (semi-IPNs) hydrogels containing biocompatible silk sericin (SS) and poly(N-isopropylacrylamide)(PNIPAM) were prepared as novel cellular matrices. Their maximum swelling degree and basic ...Semi-interpenetrating (semi-IPNs) hydrogels containing biocompatible silk sericin (SS) and poly(N-isopropylacrylamide)(PNIPAM) were prepared as novel cellular matrices. Their maximum swelling degree and basic characteristics for biomedical applications such as mouse ?broblasts (L929) cell proliferation and desorption were investigated. The results showed that the incorporation of high hydrophilic SS into PNIPAM hydrogel increased the maximum swelling degree of the semi-IPNs hydrogels, and the adhesion and growth of the L929 on semi-IPNs hydrogels were at least comparable to, or even better than, that on conventional PNIPAM hydrogel. In addition, L929 cells were found to detach from the hydrogels surface naturally by controlling environmental temperature. These results suggest great potential of semi-IPNs hydrogels in tissue engineering.展开更多
Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabrica...Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FF-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.展开更多
Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline (An) and ammonium persulfate (APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, ch...Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline (An) and ammonium persulfate (APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, chemical ion bonds and hydrogen bonds were prepared. The swelling properties of the hydrogels in solutions of different pH values (adjusted by adding NaOH or HCI) were studied. All the hydrogels prepared have similar swelling curves (the curves of equilibrium swelling ratio vs. pH value) and reach their maximum swelling at pH of 8 - 10. The maximum swelling ratio of the hydrogels is dependent on composition, including molecular weight of PAA, polymer content of the hydrogel, and molar ratios of AA to An, APS to An, and NaOH to AA, And the compositional dependence of the swelling capacity of PAn-PAA hydrogels was also studied.展开更多
Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits the...Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits their practical applications.Herein,we present a Hofmeister effect-aided facile strategy to prepare high-performance poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels.Layered montmorillonite nanosheets can not only serve as crosslinking agents to enhance the mechanical properties of the hydrogel but also promote the ion conduction.More importantly,based on the Hofmeister effect,the presence of(NH_(4))_(2)SO_(4)can endow nanocomposite hydrogels with excellent mechanical properties by affecting PVA chains'aggregation state and crystallinity.As a result,the as-prepared nanocomposite hydrogels possess unique physical properties,including robust mechanical and electrical properties.The as-prepared hydrogels can be further assembled into a high-performance flexible sensor,which can sensitively detect large-scale and small-scale human activities.The simple design concept of this work is believed to provide a new prospect for developing robust nanocomposite hydrogels and flexible devices in the future.展开更多
The aim of this study was to investigate the equilibrium swelling and sorption properties of chemically crosslinked copolymeric hydrogels as biopotential sorbent consisting of acrylamide (AAm) and 2-acrylamido-2-methy...The aim of this study was to investigate the equilibrium swelling and sorption properties of chemically crosslinked copolymeric hydrogels as biopotential sorbent consisting of acrylamide (AAm) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). Semi-interpenetrating polymer network (semi IPNs) hydrogel, composed of AAm with AMPS as co-monomer, with poly (ethylene glycol) (PEG) and a multifunctional crosslinker such as trimethylolpropane triacrylate (TMPTA) was prepared. AAm/AMPS hydrogels and AAm/AMPS/PEG semi IPNs were synthesized by free radical solution polymerization by using ammonium persulphate (APS)/N,N,N’,N’-tetramethylethylenediamine (TEMED) as redox initiating pair. Swelling experiments were performed in water, 0.01 M and 0.03 M aqueous urea solutions at 25oC, gravimetrically. The hydrogels showed enormous swelling in aqueous urea/water medium and displayed swelling characteristics that were highly depended on the chemical composition of the hydrogels. FTIR spectroscopy was used to identify the presence of different repeating units in the semi IPNs. Some swelling and diffusion characteristics were calculated for different semi IPNs and hydrogels prepared under various formulations. For sorption of cationic dye, Lauths violet into the hydrogels was studied by batch sorption technique at 25oC. Dye removal capacity, adsorption percentage and partition coefficient of the hydrogels was investigated. Swelling and dye sorption properties of AAm/AMPS hydrogels and AAm/AMPS/PEG semi IPNs were investigated as a function of chemical composition of the hydrogels.展开更多
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金funded by National Natural Science Foundation of China(22278023,22208010)Beijing Municipal Science and Technology Planning Project(Z221100002722002)+3 种基金Bingtuan Science and Technology Program(2022DB025)Beijing Natural Science Foundation(2222015)Sinopec Group(323034)the long-term from the Ministry of Finance and the Ministry of Education of PRC。
文摘An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs.
文摘Bio-based phenol-formaldehyde polymer (BioNovolac) was developed by reacting molar excess of bio-oil/phenolwith formaldehyde in acidic medium. Glycidyl 3,5-diglycidoxybenzoate (GDGB), was prepared by directglycidylation of α-resorcylic acid (RA), a naturally occurring phenolic monomer. GDGB was crosslinked in thepresence of BioNovolac by anionic polymerization. Fourier transform infrared spectroscopy (FTIR) confirmedthe formation of semi-interpenetrating polymer networks. The glass transition temperature and moduli of biobasedcrosslinked systems were observed to increase with increasing GDGB content. Active chain density andmass retention measured by dynamic mechanical analysis (DMA) and Soxhlet extraction, respectively, indicated ahigh crosslink density of the cured networks. Scanning electron microscopy (SEM) images depicted thehomogeneity of the bulk phase. The preparation of bio-based epoxy-novolac thermoset network resulted inreduced consumption of petroleum-based chemicals.
基金Funded by the National Natural Science Foundation of China(No.51873167)the National Innovation and Entrepreneurship Training Program for College Students(No.226801001)。
文摘We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.
基金The authors gratefully acknowledge the financial support of this work by Natural Science Foundation of China(grant no.s 51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(grant no.s 20200801011GH,20180101209JC,20160520138JH,20160519020JH)+1 种基金Jilin Province Development and Reform Commission(Grant nos:2019C042-5)ChangBai Mountain Scholars Program of Jilin Province.
文摘The semi-interpenetrating network anion exchange membranes(AEMs)based on quaternized polyvinyl alcohol(QPVA)and poly(-diallyldimethylammonium chloride)(PDDA)are synthesized.The chemical cross-linking structure is formed between hydroxyl groups of QPVA and aldehyde groups of glutaraldehyde(GA),which makes PDDA more stable embed in the QPVA matrix and also improves the mechanical properties and dimensional stability of AEMs.Due to the phase separation phenomenon of AEMs swelling in water,a microporous structure may be formed in the membrane,which reduces the transmission resistance of hydroxide ions and provides a larger space for the transfer of hydroxide ions,thus improving the conductivity.The ring structure of PDDA is introduced as a cationic group to transfer hydroxide ions,and shields the nucleophilic attack of the hydroxide ions through the steric hindrance effect,which improves alkaline stability.The hydroxide conductivity of semi-interpenetrating network membrane(QPVA/PDDA0.5-GA)is 36.5 mS cm^(-1) at 60℃.And the membrane of QPVA/PDDA0.5-GA exhibits excellent mechanical property with maximum tensile strength of 19.6 MPa.After immersing into hot 3 mol L^(-1) NaOH solutions at 60℃ for 300 h,the OHconductivity remains 78%of its initial value.The semi-interpenetrating network AEMs with microporous structure exhibit good ionic conductivity,mechanical strength and alkaline durability.
基金financially supported by the Ministry of Science and Technology of China under the National Key R&D Program of China (No.2023YFB3811200)the National Natural Science Foundation of China (No.22075292).
文摘Anion-exchange membranes(AEMs)with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications.During the past decades,polynorbornene(PNB)-based AEMs have shown excellent performance due to their saturated all-carbon-based backbones and diverse strategies to prepare cross-linked membranes.However,nearly all previously reported PNB-based AEMs rely on the alkyl-substituted norbornene monomers,whose low-yielding synthesis leads to high-cost of the AEMs.In addition,the crosslinked PNB-based AEMs usually suffered from mechanical brittleness.Herein,we propose a novel semi-interpenetrating polymer network(s-IPN)strategy to simultaneously enhance mechanical modulus and ionic conductivity,while using commercial 5-vinyl-2-norbornene(VNB)as the single norbornene derivatives to prepare high-performance AEMs.A diallylphenol quaternary ammonium salt was used for photo-induced crosslinking with poly-VNB and various dithiols to produce AEMs with s-IPN structures.The resultant membranes have excellent hydroxide conductivities and alkaline stability in 1 mol/L KOH at 80℃,and are successfully applied in alkaline anion-exchange membrane water electrolyzers to stably operateforover150h.
基金supported by the National Natural Science Foundation of China (No.51273189)the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05016),the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05046)
文摘Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.
基金supported by the High Levels of Health Technical Personnel in Beijing Health System of China,No.2013-3-050(to JZY)
文摘Current animal models of nerve root compression due to lumbar disc herniation only assess the mechanical compression of nerve roots and the inflammatory response. Moreover, the pressure applied in these models is static, meaning that the nerve root cannot be dynamically compressed. This is very different from the pathogenesis of lumbar disc herniation. In this study, a chitosan/polyacrylamide double-network hydrogel was prepared by a simple two-step method. The swelling ratio of the double-network hydrogel increased with prolonged time, reaching 140. The compressive strength and compressive modulus of the hydrogel reached 53.6 and 0.34 MPa, respectively. Scanning electron microscopy revealed the hydrogel's crosslinked structure with many interconnecting pores. An MTT assay demonstrated that the number of viable cells in contact with the hydrogel extracts did not significantly change relative to the control surface. Thus, the hydrogel had good biocompatibility. Finally, the double-network hydrogel was used to compress the L4 nerve root of male sand rats to simulate lumbar disc herniation nerve root compression. The hydrogel remained in its original position after compression, and swelled with increasing time. Edema appeared around the nerve root and disappeared 3 weeks after operation. This chitosan/polyacrylamide double-network hydrogel has potential as a new implant material for animal models of lumbar nerve root compression. All animal experiments were approved by the Animal Ethics Committee of Neurosurgical Institute of Beijing, Capital Medical University, China(approval No. 201601006) on July 29, 2016.
文摘The design principles and preparation methods of the double-network hydrogels are reviewed. In addition,the application of the double-network hydrogels in different fields is also introduced.
基金This work was financially supported by the National Natural Science Foundation of China(No.52273210).
文摘Semi-interpenetrating(semi-IPN)hydrogels formed by the continuous interpenetration of cross-linked polymer network and linear non-crosslinked polymer with multifunctionality are widely used in biomedical and other fields.However,the negative impact of linear polymer on the homogeneity of the cross-linked network often leads to a decrease in the mechanical properties of semi-IPN hydrogels and severely limits their applications.Herein,a bioinspired hydrogen-bonding induced phase separation strategy is presented to construct the tough semi-IPN polyvinylpyrrolidone/polyacrylamide hydrogels(named PVP/PAM hydrogels),including the linear polymer polyvinylpyrrolidone(PVP)and cross-linked polyacrylamide(PAM)network.The resultant PVPx/PAM hydrogels exhibit unique phase separation induced by the hydrogen bonding between PVP and PAM and affected by the amount of substance of PVP.Meanwhile,the phase separation of PVPx/PAM hydrogels results in excellent mechanical properties with a strain of 2590%,tensile strength of 0.28 MPa and toughness of 2.17 MJ/m^(3).More importantly,the hydrogen bonding between PVP and PAM firstly disrupts to dissipate energy under external forces,so the PVPx/PAM hydrogels exhibit good self-recovery properties and outperform chemically cross-linked PAM hydrogels in impact resistance and damping applications.It is believed that the PVPx/PAM hydrogels with hydrogen-bonding induced phase separation possess more potential application prospects.
基金Supported by the National Natural Science Foundation of China(20176007 20376087)
文摘Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N'-methylene bis(acrylamide) as crosslinker.It was found that the reaction for the crosslink polymerization of AA/AMPS hydrogels had orders of 0.58,1.14,and 0.86 with respect to the initiator,AMPS,and AA,respectively.From the Arrhenius plots,the activation energy of the crosslink polymerization was found to be about 140 and 89 kJ·mol-1 in the presence and absence of the crosslinker,respectively,in the temperature range from 45 to 65 °C.It was noted that the crosslinker had effects on the reaction order of the initiator and the activation energy due to the formation of cross-linked networks,which was verified by Fourier transfer infrared (FTIR) spectrum.To further confirm the influences of the cross-linked network structure on kinetic parameters of the crosslink polymerization,a mechanism was proposed,which highlights the different termination routes between free radical polymerization and crosslink polymerization.These results suggest that dilatometry provides a convenient tool for crosslink polymeri-zation study,and confirm that the cross-linked networks are formed in the crosslink polymerization.
基金Authors acknowledged the funding supports from the National Key R&D Program of China(2019YFA0905200).
文摘With the changes in the modern disease spectrum,pressure ulcers,diabetic feet,and vascular-derived diseases caused refractory wounds is increasing rapidly.The development of wound dressings has partly improved the effect of wound management.However,traditional wound dressings can only cover the wound and block bacteria,but are generally powerless to recurrent wound infection and tissue healing.There is an urgent need to develop a new type of wound dressing with comprehensive performance to achieve multiple effects such as protecting the wound site from the external environment,absorbing wound exudate,anti-inflammatory,antibacterial,and accelerating wound healing process.Hydrogel wound dressings have the aforementioned characteristics,and can keep the wound in a moist environment because of the high water content,which is an ideal choice for wound treatment.This review introduces the wound healing process and the development and performance advantages of hydrogel wound dressings.The choice of different preparation materials gives the particularities of different hydrogel wound dressings.It also systematically explains the main physical and chemical crosslinking methods for hydrogel synthesis.Besides,in-depth discussion of four typical hydrogel wound dressings including double network hydrogels,nanocomposite hydrogels,drug-loaded hydrogels and smart hydrogels fully demonstrates the feasibility of developing hydrogels as wound dressing products and their future development trends.
基金financially supported by the National Natural Science Foundation of China (U1705255 and 21975158)the Program of Shanghai Academic Research Leader (20XD1401900)the Key-Area Research and Development Program of Guangdong Province (2019B090908001)。
文摘High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode delivered superior electrochemical performance.However,the sulfur content of S@pPAN is relatively low(<50 wt%),which significantly limits the energy density.Herein,a hydrogel SA-Cu binder was proposed with a crosslinking network constructed by Cu^(2+) ions.The introduction of Cu^(2+) ions enabled excellent electrochemical behaviors of S@pPAN cathode even with high sulfur content of 52.6 wt% via chemical interaction with sulfur and polysulfide.Moreover,a favorable cathode interphase was formed containing electrochemically active and conductive CuSx.S@pPAN/SA-Cu exhibited a high sulfur utilization of 85.3%,long cycling stability over 1000 cycles and remarkable capacity of 1200 mAh g_(s)^(-1) even at10 C.Furthermore,ascribed to the improved electrode structure,high-loading electrode(sulfur loading:4 mg cm^(-2)) displayed stable cycling with areal capacity of 5.26 mAh cm^(-2)(1315 mAh g_(s)^(-1)) after 40 cycles.This study provides new directions to prepare high-sulfur content and high-loading S@pPAN cathode for higher energy density.
基金support of the National Natural Science Foundation of China(Nos. 21603197, 21703212,21233006 and 21473164)Natural Science Foundation of Hubei Province of China(No.2016CFB181)+1 种基金Fundamental Research Funds for the Central University, China University of Geosciences (Wuhan)(No. CUGL180403)China University of Geosciences (Wuhan) for the program of Center for Advanced Energy Research and Technologies
文摘Low methanol permeability of proton exchange membranes (PEMs) is greatly important for direct methanol fuel cells (DMFCs). Here, sulfonated poly (ether ether ketone) (SPEEK) based semiinterpenetrating polymer networks (semi-IPNs) are successfully prepared by interpenetrating SPEEK into the in-situ synthesized crosslinking networks. The polymeric networks are formed by the covalent bonds between bromobenzyl groups of bro mo methylated poly (phenylene oxide) and amine groups of diamine linkers as well as the ionic bonds between amine species and sulfonated groups. Two linkers without and with sulfonated groups are applied to fabricate the semi-IPNs. The core properties of the membranes, like phase separation, water uptake, proton conductivity and methanol permeability, are systematically studied and compared. The DMFCs assembled by using the semi-IPN membranes display better performance than Nafion 117 in high concentration methanol solutions. The present work provides a facile way to prepare PEMs with enhanced DMFC performance.
文摘Semi-interpenetrating (semi-IPNs) hydrogels containing biocompatible silk sericin (SS) and poly(N-isopropylacrylamide)(PNIPAM) were prepared as novel cellular matrices. Their maximum swelling degree and basic characteristics for biomedical applications such as mouse ?broblasts (L929) cell proliferation and desorption were investigated. The results showed that the incorporation of high hydrophilic SS into PNIPAM hydrogel increased the maximum swelling degree of the semi-IPNs hydrogels, and the adhesion and growth of the L929 on semi-IPNs hydrogels were at least comparable to, or even better than, that on conventional PNIPAM hydrogel. In addition, L929 cells were found to detach from the hydrogels surface naturally by controlling environmental temperature. These results suggest great potential of semi-IPNs hydrogels in tissue engineering.
基金The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 20174029)National Key Basic Research and Development Program (2005CB623903).
文摘Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FF-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.
文摘Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline (An) and ammonium persulfate (APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, chemical ion bonds and hydrogen bonds were prepared. The swelling properties of the hydrogels in solutions of different pH values (adjusted by adding NaOH or HCI) were studied. All the hydrogels prepared have similar swelling curves (the curves of equilibrium swelling ratio vs. pH value) and reach their maximum swelling at pH of 8 - 10. The maximum swelling ratio of the hydrogels is dependent on composition, including molecular weight of PAA, polymer content of the hydrogel, and molar ratios of AA to An, APS to An, and NaOH to AA, And the compositional dependence of the swelling capacity of PAn-PAA hydrogels was also studied.
基金Project supported by the National Natural Science Foundation of China(Grant No.12274356)the Fundamental Research Funds for the Central Universities(Grant No.20720220022)the 111 Project(Grant No.B16029)。
文摘Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits their practical applications.Herein,we present a Hofmeister effect-aided facile strategy to prepare high-performance poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels.Layered montmorillonite nanosheets can not only serve as crosslinking agents to enhance the mechanical properties of the hydrogel but also promote the ion conduction.More importantly,based on the Hofmeister effect,the presence of(NH_(4))_(2)SO_(4)can endow nanocomposite hydrogels with excellent mechanical properties by affecting PVA chains'aggregation state and crystallinity.As a result,the as-prepared nanocomposite hydrogels possess unique physical properties,including robust mechanical and electrical properties.The as-prepared hydrogels can be further assembled into a high-performance flexible sensor,which can sensitively detect large-scale and small-scale human activities.The simple design concept of this work is believed to provide a new prospect for developing robust nanocomposite hydrogels and flexible devices in the future.
文摘The aim of this study was to investigate the equilibrium swelling and sorption properties of chemically crosslinked copolymeric hydrogels as biopotential sorbent consisting of acrylamide (AAm) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). Semi-interpenetrating polymer network (semi IPNs) hydrogel, composed of AAm with AMPS as co-monomer, with poly (ethylene glycol) (PEG) and a multifunctional crosslinker such as trimethylolpropane triacrylate (TMPTA) was prepared. AAm/AMPS hydrogels and AAm/AMPS/PEG semi IPNs were synthesized by free radical solution polymerization by using ammonium persulphate (APS)/N,N,N’,N’-tetramethylethylenediamine (TEMED) as redox initiating pair. Swelling experiments were performed in water, 0.01 M and 0.03 M aqueous urea solutions at 25oC, gravimetrically. The hydrogels showed enormous swelling in aqueous urea/water medium and displayed swelling characteristics that were highly depended on the chemical composition of the hydrogels. FTIR spectroscopy was used to identify the presence of different repeating units in the semi IPNs. Some swelling and diffusion characteristics were calculated for different semi IPNs and hydrogels prepared under various formulations. For sorption of cationic dye, Lauths violet into the hydrogels was studied by batch sorption technique at 25oC. Dye removal capacity, adsorption percentage and partition coefficient of the hydrogels was investigated. Swelling and dye sorption properties of AAm/AMPS hydrogels and AAm/AMPS/PEG semi IPNs were investigated as a function of chemical composition of the hydrogels.