Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray...Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive spectrometer(EDS), high resolution transmission electron microscope(HRTEM) and hydrogen absorption/desorption measurements. XRD analysis results showed that Mg_2Ni and Mg phases were detected in the XRD pattern of the Mg_(23)Ni_(10) alloy, however, the La addition results in conversion from Mg to LaMg_3 and La_2Mg_(17) phases and appearance of crystal defects included dislocations, twin grain boundary and vacancy in the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloy textures. The total maximum hydrogen absorption capacity was 4.45 wt% for the Mg_(23)Ni_(10) alloy, however, the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys with vacancy, dislocations and twin grain boundary, absorbed 3.66 wt% and 3.60 wt%, respectively, indicating that the La addition led to decreasing of the maximum hydrogen absorption capacity. Besides, hydrogen absorption/desorption of 90% of saturated state expended for about 456 and 990 s for pristine Mg_(23)Ni_(10) alloy, by contrast, the time decreased owing to improvement of hydrogen absorption and desorption kinetics in the alloy with La element, with which the uptake time for hydrogen content to 90% of saturated state was 150 and 78 s, and 90% hydrogen can be released in 930 and 804 s for Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys in the experimental condition.展开更多
Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improv...Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds.展开更多
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal ki...High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced.展开更多
The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimen...The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.展开更多
The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of...The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of the gas-phase,and the liquid-phase on absorption efficiency of sulfur dioxide and the influence of ultrasonic frequency,ultrasonic power and stirring speed on desorption efficiency of sulfur dioxide were examined.The results indicate that the absorption efficiency decreases with increasing flow velocity and sulfur dioxide content in gas-phase,and can be improved by increasing the concentration and the pH value of citrate solution.It is concluded that lower ultrasonic frequency results in a better degassing efficiency.The using of ultrasound in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in the some conditions,without changing the essence of chemical reaction.展开更多
As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing t...As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing to prevent moisture penetration is not required.The spontaneous moisture absorption and desorption of this encapsulant and its raw materials,poly(ethylene-co-acrylic acid)and an ionomer,are analyzed under different climatic conditions in this work.The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content(EMC).Higher air humidity results in a larger EMC.The homogenization of the absorbed water molecules is a diffusion-controlled process,in which temperature plays a dominant role.Nevertheless,the diffusion coefficient at a higher temperature is still relatively low.Hence,under normal climatic conditions for the application of PV modules,we believe that the investigated ionomer-based encapsulant can“breathe”the humidity:During the day,when there is higher relative humidity,it“inhales”(absorbs)moisture and restrains it within the outer edge of the module;then at night,when there is a lower relative humidity,it“exhales”(desorbs)the moisture.In this way,the encapsulant protects the cell from moisture ingress.展开更多
Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot ...Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance.展开更多
With aqueous ammonia in the process of CO2 absorption and desorption to join sodium bicarbonate, the influence of HCO3- on CO2 absorption and desorption from ammonia solution was investigated through the experimental ...With aqueous ammonia in the process of CO2 absorption and desorption to join sodium bicarbonate, the influence of HCO3- on CO2 absorption and desorption from ammonia solution was investigated through the experimental analysis of the desorption quantity of CO2, desorption rate, CO2 loading and the absorption rate. The experimental results showed that, in experimental conditions, The desorption rate decreased gradually with increasing ammonia concentrations. The desorption rate increased 12%, 17%, 19% and 28.8% when 1 mol/L of ammonia solution is added in 0.1 mol/L, 0.3 mol/L, 0.5 mol/L and 1 mol/L of sodium bicarbonate. The higher concentration of ammonium bicarbonate solution which was added sodium bicarbonate,the more observably the effect of CO2 desorption was promoted. The absorption rate had dropped when absorption process added 0.3 mol/L sodium bicarbonate, the CO2 loading was a little change.展开更多
The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was appli...The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed.展开更多
The hydrogen absorption characteristics and microstructural evolution of TC21 titanium alloy were investigated by kinetic model analysis, optical microscopy (OM) and X-ray diffraction (XRD). The results show that ...The hydrogen absorption characteristics and microstructural evolution of TC21 titanium alloy were investigated by kinetic model analysis, optical microscopy (OM) and X-ray diffraction (XRD). The results show that the hydrogen absorption reaction occurred during the hydrogen absorption process of TC21 titanium alloy can be divided into two different stages according to the hydrogen absorption kinetics. After hydrogenation, the microstructure of TC21 titanium alloy changes obviously. Just a little hydrogen will change the contrast of transformedβphase. The contrast ofα phase darkens when the hydrogen content in TC21 titanium alloy exceeds 0.5% (mass fraction). The phase/grain boundaries become ambiguous or even vanished, andβ phase becomes the main phase instead ofα phase when the hydrogen content reaches 0.625%. Moreover,α phase disappears when the hydrogen content reaches 1.065%. Additionally, the XRD analysis shows that α' martensite and FCCδ hydride appear in the hydrogenated alloy. According to the microstructures and XRD analysis, the schematic diagrams of hydrogen diffusion process in TC21 titanium alloy were established.展开更多
Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement....Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement. The DSC measurements showed that hydrogenation of Nd-rich phase occurred in the temperature range of 40-185 ℃, hydrogenation of the tetragonal (Ф) phase in the temperature range of 185-220 ℃, as well as the disproportionation of the Ф phase that occurred in a broad temperature range from around 500 to 800 ℃. The hydrogenation kinetics measurements indicated that hydrogen absorption of the bulk magnets at 50 ℃ absorbed more hydrogen than at 150 ℃, although this procedure was slower at 50 ℃ than at 150℃. This phenomenon was discussed by means of pressure-concentration-temperature (p-c-T) diagrams.展开更多
The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure compositi...The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure composition isotherms for both the alloy powder and the slurry suspended with MlNi 5 were measured at several temperatures(10, 20, 30, 40 ℃). The standard enthalpy of formation Δ H ° and standard entropy of formation Δ S ° for the alloy powder with and without benzene were determined respectively. The experimental results show that the values of Δ H ° and Δ S ° for the hydriding reaction of hydrogen storage alloy (MlNi 5) of the slurry system and the gas solid system are all very close.展开更多
The absorption of hydrogen was studied in metal hydride slurry, which is formed by benzene and hydrogen storage alloy powder. The influence of temperature on the rate of absorption was discussed using three phase mas...The absorption of hydrogen was studied in metal hydride slurry, which is formed by benzene and hydrogen storage alloy powder. The influence of temperature on the rate of absorption was discussed using three phase mass transfer model. It is also concluded that the suitable absorption temperature is 313 K.展开更多
Interactions between materials and electromagnetic irradiations in the microwave frequency are critical for many civil and military applications, such as radar detection, communications, information processing and tra...Interactions between materials and electromagnetic irradiations in the microwave frequency are critical for many civil and military applications, such as radar detection, communications, information processing and transport et al. Dipole rotations or magnetic domain resonance are the mainly traditional mechanisms for microwave absorption. The recent finding of the excellent microwave absorption from hydrogenated TiO2 nanoparticles provides us an alternative approach for achieving such absorption, by manipulating the structural defects inside nanoparticles through hydrogenation. In this study, we demonstrate that the microwave absorption can be not only achieved but fine-tuned with TiO2 nanoparticles thermally treated in a Mg/H2 environment. Their position and efficiency can be effectively controlled by the treating temperature. Specifically, the microwave absorption position shifts to the lower frequency region as the treating temperature increases, and there seems to exist an optimal treating temperature to obtain the maximum efficiency, as the absorbing efficiency first increases, and then decreases, with the increase in treatment temperature. Therefore, this study enriches our knowledge and understanding microwave absorption from TiO2-based nanomaterials which may inspire new ideas on other systems to enhance their performance as well.展开更多
Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes were studied by means of first-principles calculations. The structure and stability of continuous hydrogenation in single vacan...Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes were studied by means of first-principles calculations. The structure and stability of continuous hydrogenation in single vacancy were investigated. Several new stable structures were found, along with their corresponding energy barriers. In double-vacancy graphene, the preferred sites of H atoms were identified, and H2 molecule desorption and adsorption of from/on were calculated from the energy barriers. This work provides a systematic and comprehensive understanding of hydrogen behavior on defected graphene.展开更多
The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, at...The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, atomic coordination number and viscosity of aluminum melts were calculated and they changed abnormally in the same temperature range. The mechanism of hydrogen absorption has been discussed. From molecular dynamics calculations, the interdependence between melt structural properties and hydrogen absorption were obtained.展开更多
We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency r...We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the exter- nal static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.展开更多
Noble metal palladium(Pd)is well‐known as excellent photocatalytic cocatalyst,but its strong adsorption to hydrogen causes its limited H2‐evolution activity.In this study,the transition metal Cu was successfully int...Noble metal palladium(Pd)is well‐known as excellent photocatalytic cocatalyst,but its strong adsorption to hydrogen causes its limited H2‐evolution activity.In this study,the transition metal Cu was successfully introduced into the metallic Pd to weaken its hydrogen‐adsorption strength to improve its interfacial H_(2)‐evolution rate via the Pd‐Cu alloying effect.Herein,the ultrasmall Pd_(100−x)Cu_(x) alloy nanodots(2−5 nm)as a novel H_(2)‐evolution cocatalyst were integrated with the TiO_(2) through a simple NaH_(2)PO_(2)‐mediated co‐deposition route.The resulting Pd_(100−x)Cu_(x)/TiO_(2) sample shows the significantly enhanced photocatalytic H_(2)‐generation performance(269.2μmol h^(−1)),which is much higher than the bare TiO2.Based on in situ irradiated X‐ray photoelectron spectroscopy(ISI‐XPS)and density functional theory(DFT)results,the as‐formed Pd_(100−x)Cu_(x) alloy nanodots can effectively promote the separation of photo‐generated charges and weak the adsorption strength for hydrogen to optimize the process of hydrogen‐desorption process on Pd_(75)Cu_(25) alloy,thus leading to high photocatalytic H_(2)‐evolution activity.Herein,the weakened H adsorption of Pd_(75)Cu_(25) cocatalyst can be ascribed to the formation of electron‐rich Pd after the introduction of weak electronegativity Cu.The present work about optimizing electronic structure for promoting interfacial reaction activity provides a new sight for the development of the highly efficient photocatalysts.展开更多
NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exh...NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exhibits strong stability and requires temperatures above 500℃ for hydrogen release in practical applications.In this study,two polyhydric alcohols,xylitol and erythritol(XE),were prepared as a binary eutectic sugar alcohol through a grinding-melting method.This binary eutectic sugar alcohol was used as a proton-hydrogen carrier to destabilize NaBH_(4).The 19NaBH_(4)-16XE composite material prepared by ball milling could start releasing hydrogen at 57.5℃,and the total hydrogen release can reach over 88.8%(4.45%(mass))of the theoretical capacity.When the 19NaBH_(4)-16XE composite was pressed into solid blocks,the volumetric hydrogen capacity of the block-shaped composite could reach 67.2 g·L^(–1).By controlling the temperature,the hydrogen desorption capacity of the NaBH_(4)-XE composite material was controllable,which has great potential for achieving solid-state hydrogen production from NaBH_(4).展开更多
Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may pl...Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may play a key role in the further dehydrogenation process.In this work,first-principles calculations have been used to understand the dehydrogenation properties of the Mg(0001)/MgH_(2)(110) interface.It is found that the Mg(0001)/MgH_(2)(110) interface can weaken the Mg-H bond.The removal energies for hydrogen atoms in the interface zone are significantly lower compared to those of bulk MgH_(2).In terms of H mobility,hydrogen diffusion within the interface as well as into the Mg matrix is considered.The calculated energy barriers reveal that the migration of hydrogen atoms in the interface zone is easier than that in the bulk MgH_(2).Based on the hydrogen removal energies and diffusion barriers,we conclude that the formation of the Mg(0001)/MgH_(2)(110) interface facilitates the dehydrogenation process of magnesium hydride.展开更多
基金Founded by the National Natural Science Foundation of China(51371094 and 51161015)the Hebei University Experiment Center Project(sy2015091)
文摘Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive spectrometer(EDS), high resolution transmission electron microscope(HRTEM) and hydrogen absorption/desorption measurements. XRD analysis results showed that Mg_2Ni and Mg phases were detected in the XRD pattern of the Mg_(23)Ni_(10) alloy, however, the La addition results in conversion from Mg to LaMg_3 and La_2Mg_(17) phases and appearance of crystal defects included dislocations, twin grain boundary and vacancy in the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloy textures. The total maximum hydrogen absorption capacity was 4.45 wt% for the Mg_(23)Ni_(10) alloy, however, the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys with vacancy, dislocations and twin grain boundary, absorbed 3.66 wt% and 3.60 wt%, respectively, indicating that the La addition led to decreasing of the maximum hydrogen absorption capacity. Besides, hydrogen absorption/desorption of 90% of saturated state expended for about 456 and 990 s for pristine Mg_(23)Ni_(10) alloy, by contrast, the time decreased owing to improvement of hydrogen absorption and desorption kinetics in the alloy with La element, with which the uptake time for hydrogen content to 90% of saturated state was 150 and 78 s, and 90% hydrogen can be released in 930 and 804 s for Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys in the experimental condition.
基金financially supported by the National Natural Science Foundation of China (22372001)Starting Fund for Scientific Research of High-Level Talents, Anhui Agricultural University (rc382108)+1 种基金Anhui Provincial Key Research and Development Plan (2022e07020037)Innovation and Entrepreneurship Training Program for College Students (X202310364204, S202210364046, X202310364209)
文摘Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds.
基金This work was financially supported by the Chongqing Special Key Project of Technology Innovation and Applica-tion Development,China(No.cstc2019jscx-dxwtB0029)the National Natural Science Foundation of China(Nos.51871143 and U2102212)+1 种基金the Science and Technology Committee of Shanghai,China(No.19010500400)the Shanghai Rising-Star Program(No.21QA1403200).
文摘High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced.
文摘The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.
基金Projects(50874087,50978212) supported by the National Natural Science Foundation of China
文摘The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of the gas-phase,and the liquid-phase on absorption efficiency of sulfur dioxide and the influence of ultrasonic frequency,ultrasonic power and stirring speed on desorption efficiency of sulfur dioxide were examined.The results indicate that the absorption efficiency decreases with increasing flow velocity and sulfur dioxide content in gas-phase,and can be improved by increasing the concentration and the pH value of citrate solution.It is concluded that lower ultrasonic frequency results in a better degassing efficiency.The using of ultrasound in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in the some conditions,without changing the essence of chemical reaction.
文摘As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing to prevent moisture penetration is not required.The spontaneous moisture absorption and desorption of this encapsulant and its raw materials,poly(ethylene-co-acrylic acid)and an ionomer,are analyzed under different climatic conditions in this work.The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content(EMC).Higher air humidity results in a larger EMC.The homogenization of the absorbed water molecules is a diffusion-controlled process,in which temperature plays a dominant role.Nevertheless,the diffusion coefficient at a higher temperature is still relatively low.Hence,under normal climatic conditions for the application of PV modules,we believe that the investigated ionomer-based encapsulant can“breathe”the humidity:During the day,when there is higher relative humidity,it“inhales”(absorbs)moisture and restrains it within the outer edge of the module;then at night,when there is a lower relative humidity,it“exhales”(desorbs)the moisture.In this way,the encapsulant protects the cell from moisture ingress.
文摘Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance.
文摘With aqueous ammonia in the process of CO2 absorption and desorption to join sodium bicarbonate, the influence of HCO3- on CO2 absorption and desorption from ammonia solution was investigated through the experimental analysis of the desorption quantity of CO2, desorption rate, CO2 loading and the absorption rate. The experimental results showed that, in experimental conditions, The desorption rate decreased gradually with increasing ammonia concentrations. The desorption rate increased 12%, 17%, 19% and 28.8% when 1 mol/L of ammonia solution is added in 0.1 mol/L, 0.3 mol/L, 0.5 mol/L and 1 mol/L of sodium bicarbonate. The higher concentration of ammonium bicarbonate solution which was added sodium bicarbonate,the more observably the effect of CO2 desorption was promoted. The absorption rate had dropped when absorption process added 0.3 mol/L sodium bicarbonate, the CO2 loading was a little change.
基金Project(51464008) supported by the National Natural Science Foundation of ChinaProject(KY[2012]004) supported by the Key Laboratory Item of Education Office in Guizhou Province,China
文摘The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed.
基金Project(51205102)supported by the National Natural Science Foundation of ChinaProject(2012M511401)supported by the Postdoctoral Science Foundation of China
文摘The hydrogen absorption characteristics and microstructural evolution of TC21 titanium alloy were investigated by kinetic model analysis, optical microscopy (OM) and X-ray diffraction (XRD). The results show that the hydrogen absorption reaction occurred during the hydrogen absorption process of TC21 titanium alloy can be divided into two different stages according to the hydrogen absorption kinetics. After hydrogenation, the microstructure of TC21 titanium alloy changes obviously. Just a little hydrogen will change the contrast of transformedβphase. The contrast ofα phase darkens when the hydrogen content in TC21 titanium alloy exceeds 0.5% (mass fraction). The phase/grain boundaries become ambiguous or even vanished, andβ phase becomes the main phase instead ofα phase when the hydrogen content reaches 0.625%. Moreover,α phase disappears when the hydrogen content reaches 1.065%. Additionally, the XRD analysis shows that α' martensite and FCCδ hydride appear in the hydrogenated alloy. According to the microstructures and XRD analysis, the schematic diagrams of hydrogen diffusion process in TC21 titanium alloy were established.
文摘Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement. The DSC measurements showed that hydrogenation of Nd-rich phase occurred in the temperature range of 40-185 ℃, hydrogenation of the tetragonal (Ф) phase in the temperature range of 185-220 ℃, as well as the disproportionation of the Ф phase that occurred in a broad temperature range from around 500 to 800 ℃. The hydrogenation kinetics measurements indicated that hydrogen absorption of the bulk magnets at 50 ℃ absorbed more hydrogen than at 150 ℃, although this procedure was slower at 50 ℃ than at 150℃. This phenomenon was discussed by means of pressure-concentration-temperature (p-c-T) diagrams.
文摘The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure composition isotherms for both the alloy powder and the slurry suspended with MlNi 5 were measured at several temperatures(10, 20, 30, 40 ℃). The standard enthalpy of formation Δ H ° and standard entropy of formation Δ S ° for the alloy powder with and without benzene were determined respectively. The experimental results show that the values of Δ H ° and Δ S ° for the hydriding reaction of hydrogen storage alloy (MlNi 5) of the slurry system and the gas solid system are all very close.
文摘The absorption of hydrogen was studied in metal hydride slurry, which is formed by benzene and hydrogen storage alloy powder. The influence of temperature on the rate of absorption was discussed using three phase mass transfer model. It is also concluded that the suitable absorption temperature is 313 K.
基金support from the U.S. National Science Foundation (DMR-1609061)the College of Arts and Sciences, University of Missouri-Kansas City
文摘Interactions between materials and electromagnetic irradiations in the microwave frequency are critical for many civil and military applications, such as radar detection, communications, information processing and transport et al. Dipole rotations or magnetic domain resonance are the mainly traditional mechanisms for microwave absorption. The recent finding of the excellent microwave absorption from hydrogenated TiO2 nanoparticles provides us an alternative approach for achieving such absorption, by manipulating the structural defects inside nanoparticles through hydrogenation. In this study, we demonstrate that the microwave absorption can be not only achieved but fine-tuned with TiO2 nanoparticles thermally treated in a Mg/H2 environment. Their position and efficiency can be effectively controlled by the treating temperature. Specifically, the microwave absorption position shifts to the lower frequency region as the treating temperature increases, and there seems to exist an optimal treating temperature to obtain the maximum efficiency, as the absorbing efficiency first increases, and then decreases, with the increase in treatment temperature. Therefore, this study enriches our knowledge and understanding microwave absorption from TiO2-based nanomaterials which may inspire new ideas on other systems to enhance their performance as well.
基金supported by the National Natural Science Foundation of China(Grant No.5160121211475082)‘‘Strategic Priority Research Program of Chinese Academy of Sciences’’ Thorium Molten Salts Reactor Fund
文摘Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes were studied by means of first-principles calculations. The structure and stability of continuous hydrogenation in single vacancy were investigated. Several new stable structures were found, along with their corresponding energy barriers. In double-vacancy graphene, the preferred sites of H atoms were identified, and H2 molecule desorption and adsorption of from/on were calculated from the energy barriers. This work provides a systematic and comprehensive understanding of hydrogen behavior on defected graphene.
基金Funded by the National Basic Research Program of China (No.2005CB623703)National Science Foundation for Distinguished Young Scholars of China (No. 50825401)
文摘The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, atomic coordination number and viscosity of aluminum melts were calculated and they changed abnormally in the same temperature range. The mechanism of hydrogen absorption has been discussed. From molecular dynamics calculations, the interdependence between melt structural properties and hydrogen absorption were obtained.
基金Project supported by the Science Research Program of Hunan Province, China (Grant No. 2010FJ4092)the National Natural Science Foundation of China (Grant No. 11075073)
文摘We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the exter- nal static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.
文摘Noble metal palladium(Pd)is well‐known as excellent photocatalytic cocatalyst,but its strong adsorption to hydrogen causes its limited H2‐evolution activity.In this study,the transition metal Cu was successfully introduced into the metallic Pd to weaken its hydrogen‐adsorption strength to improve its interfacial H_(2)‐evolution rate via the Pd‐Cu alloying effect.Herein,the ultrasmall Pd_(100−x)Cu_(x) alloy nanodots(2−5 nm)as a novel H_(2)‐evolution cocatalyst were integrated with the TiO_(2) through a simple NaH_(2)PO_(2)‐mediated co‐deposition route.The resulting Pd_(100−x)Cu_(x)/TiO_(2) sample shows the significantly enhanced photocatalytic H_(2)‐generation performance(269.2μmol h^(−1)),which is much higher than the bare TiO2.Based on in situ irradiated X‐ray photoelectron spectroscopy(ISI‐XPS)and density functional theory(DFT)results,the as‐formed Pd_(100−x)Cu_(x) alloy nanodots can effectively promote the separation of photo‐generated charges and weak the adsorption strength for hydrogen to optimize the process of hydrogen‐desorption process on Pd_(75)Cu_(25) alloy,thus leading to high photocatalytic H_(2)‐evolution activity.Herein,the weakened H adsorption of Pd_(75)Cu_(25) cocatalyst can be ascribed to the formation of electron‐rich Pd after the introduction of weak electronegativity Cu.The present work about optimizing electronic structure for promoting interfacial reaction activity provides a new sight for the development of the highly efficient photocatalysts.
基金support from the National Natural Science Foundation of China(52201255)the Natural Science Foundation of Jiangsu Province(BK20210884)the Innovation,and Entrepreneurship Program of Jiangsu Province(JSSCBS20211007).
文摘NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exhibits strong stability and requires temperatures above 500℃ for hydrogen release in practical applications.In this study,two polyhydric alcohols,xylitol and erythritol(XE),were prepared as a binary eutectic sugar alcohol through a grinding-melting method.This binary eutectic sugar alcohol was used as a proton-hydrogen carrier to destabilize NaBH_(4).The 19NaBH_(4)-16XE composite material prepared by ball milling could start releasing hydrogen at 57.5℃,and the total hydrogen release can reach over 88.8%(4.45%(mass))of the theoretical capacity.When the 19NaBH_(4)-16XE composite was pressed into solid blocks,the volumetric hydrogen capacity of the block-shaped composite could reach 67.2 g·L^(–1).By controlling the temperature,the hydrogen desorption capacity of the NaBH_(4)-XE composite material was controllable,which has great potential for achieving solid-state hydrogen production from NaBH_(4).
基金support by the National Natural Science Foundation of China under Grant No.U20A20237 and the High Performance Computing Center of Central South University are gratefully acknowledged.
文摘Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may play a key role in the further dehydrogenation process.In this work,first-principles calculations have been used to understand the dehydrogenation properties of the Mg(0001)/MgH_(2)(110) interface.It is found that the Mg(0001)/MgH_(2)(110) interface can weaken the Mg-H bond.The removal energies for hydrogen atoms in the interface zone are significantly lower compared to those of bulk MgH_(2).In terms of H mobility,hydrogen diffusion within the interface as well as into the Mg matrix is considered.The calculated energy barriers reveal that the migration of hydrogen atoms in the interface zone is easier than that in the bulk MgH_(2).Based on the hydrogen removal energies and diffusion barriers,we conclude that the formation of the Mg(0001)/MgH_(2)(110) interface facilitates the dehydrogenation process of magnesium hydride.