期刊文献+
共找到1,431篇文章
< 1 2 72 >
每页显示 20 50 100
Microstructure and Hydrogen Absorption/Desorption Behavior of Mg23-xLaxNi10 Alloy
1
作者 董小平 杨丽颖 +2 位作者 PANG Yanrong WANG Tao WEN Lijuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期476-484,共9页
Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray... Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive spectrometer(EDS), high resolution transmission electron microscope(HRTEM) and hydrogen absorption/desorption measurements. XRD analysis results showed that Mg_2Ni and Mg phases were detected in the XRD pattern of the Mg_(23)Ni_(10) alloy, however, the La addition results in conversion from Mg to LaMg_3 and La_2Mg_(17) phases and appearance of crystal defects included dislocations, twin grain boundary and vacancy in the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloy textures. The total maximum hydrogen absorption capacity was 4.45 wt% for the Mg_(23)Ni_(10) alloy, however, the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys with vacancy, dislocations and twin grain boundary, absorbed 3.66 wt% and 3.60 wt%, respectively, indicating that the La addition led to decreasing of the maximum hydrogen absorption capacity. Besides, hydrogen absorption/desorption of 90% of saturated state expended for about 456 and 990 s for pristine Mg_(23)Ni_(10) alloy, by contrast, the time decreased owing to improvement of hydrogen absorption and desorption kinetics in the alloy with La element, with which the uptake time for hydrogen content to 90% of saturated state was 150 and 78 s, and 90% hydrogen can be released in 930 and 804 s for Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys in the experimental condition. 展开更多
关键词 Mg-based alloy microstructure hydrogen absorption/desorption behavior
下载PDF
Accelerating H^(*)desorption of hollow Mo_(2)C nanoreactor via in-situ grown carbon dots for electrocatalytic hydrogen evolution
2
作者 Mengmeng Liu Yuanyuan Jiang +3 位作者 Zhuwei Cao Lulu Liu Hong Chen Sheng Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期464-471,共8页
Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improv... Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds. 展开更多
关键词 Mo_(2)C nanoreactor Carbon dots H^(*)desorption Electrocatalytic hydrogen evolution
下载PDF
Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review 被引量:22
3
作者 Qian Li Xi Lin +4 位作者 Qun Luo Yuʼan Chen Jingfeng Wang Bin Jiang Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期32-48,共17页
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal ki... High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced. 展开更多
关键词 hydrogen storage metal hydrides hydrogen absorption process hydrogen desorption process kinetic models
下载PDF
Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments
4
作者 吴曙东 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期619-626,共8页
The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimen... The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs. 展开更多
关键词 monolayer transition metal dichalcogenides hydrogenic donor impurity intersubband optical absorption dielectric environment nonorthogonal associated Laguerre basis
下载PDF
Absorption of sulfur dioxide using membrane and enhancement of desorption with ultrasound 被引量:5
5
作者 薛娟琴 李京仙 +3 位作者 卢曦 毛维博 王玉洁 吴明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期930-934,共5页
The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of... The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of the gas-phase,and the liquid-phase on absorption efficiency of sulfur dioxide and the influence of ultrasonic frequency,ultrasonic power and stirring speed on desorption efficiency of sulfur dioxide were examined.The results indicate that the absorption efficiency decreases with increasing flow velocity and sulfur dioxide content in gas-phase,and can be improved by increasing the concentration and the pH value of citrate solution.It is concluded that lower ultrasonic frequency results in a better degassing efficiency.The using of ultrasound in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in the some conditions,without changing the essence of chemical reaction. 展开更多
关键词 sulfur dioxide absorption desorption MEMBRANE ULTRASOUND CITRATE flue gas desulphurization
下载PDF
Moisture Absorption and Desorption in an Ionomer-Based Encapsulant:A Type of Self-Breathing Encapsulant for CIGS Thin-Film PV Modules 被引量:2
6
作者 Miao Yang Raymund Schäffler +1 位作者 Tobias Repmann Kay Orgassa 《Engineering》 SCIE EI 2020年第12期1403-1407,共5页
As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing t... As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing to prevent moisture penetration is not required.The spontaneous moisture absorption and desorption of this encapsulant and its raw materials,poly(ethylene-co-acrylic acid)and an ionomer,are analyzed under different climatic conditions in this work.The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content(EMC).Higher air humidity results in a larger EMC.The homogenization of the absorbed water molecules is a diffusion-controlled process,in which temperature plays a dominant role.Nevertheless,the diffusion coefficient at a higher temperature is still relatively low.Hence,under normal climatic conditions for the application of PV modules,we believe that the investigated ionomer-based encapsulant can“breathe”the humidity:During the day,when there is higher relative humidity,it“inhales”(absorbs)moisture and restrains it within the outer edge of the module;then at night,when there is a lower relative humidity,it“exhales”(desorbs)the moisture.In this way,the encapsulant protects the cell from moisture ingress. 展开更多
关键词 IONOMER ENCAPSULANT Moisture absorption and desorption Cu(In Ga)Se2 photovoltaic module
下载PDF
MASS TRANSFER IN MEMBRANE ABSORPTIONDESORPTION OF AMMONIA FROM AMMONIA WATER 被引量:6
7
作者 王世昌 徐世昌 秦英杰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1993年第3期37-47,共11页
Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot ... Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance. 展开更多
关键词 mass transfer MEMBRANE absorption-desorption HOLLOW fiber AMMONIA water AMMONIA re-moval rate
下载PDF
Experimental Studies on the Influence of HCO<sub>3</sub>- on Absorption and Desorption of CO<sub>2</sub>from Ammonia Solution 被引量:1
8
作者 Shaojian Jiang Wei Zhong +2 位作者 Rui Peng Yong Jiang Jun Zhang 《Advances in Materials Physics and Chemistry》 2012年第4期240-243,共4页
With aqueous ammonia in the process of CO2 absorption and desorption to join sodium bicarbonate, the influence of HCO3- on CO2 absorption and desorption from ammonia solution was investigated through the experimental ... With aqueous ammonia in the process of CO2 absorption and desorption to join sodium bicarbonate, the influence of HCO3- on CO2 absorption and desorption from ammonia solution was investigated through the experimental analysis of the desorption quantity of CO2, desorption rate, CO2 loading and the absorption rate. The experimental results showed that, in experimental conditions, The desorption rate decreased gradually with increasing ammonia concentrations. The desorption rate increased 12%, 17%, 19% and 28.8% when 1 mol/L of ammonia solution is added in 0.1 mol/L, 0.3 mol/L, 0.5 mol/L and 1 mol/L of sodium bicarbonate. The higher concentration of ammonium bicarbonate solution which was added sodium bicarbonate,the more observably the effect of CO2 desorption was promoted. The absorption rate had dropped when absorption process added 0.3 mol/L sodium bicarbonate, the CO2 loading was a little change. 展开更多
关键词 Ammonia desorption the desorption Rate CO2 absorption CO2 Loading
下载PDF
Hydrogen desorption kinetics mechanism of Mg-Ni hydride under isothermal and non-isothermal conditions 被引量:2
9
作者 陈朝轶 陈辉林 +1 位作者 马亚芹 刘静 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期160-166,共7页
The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was appli... The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed. 展开更多
关键词 Mg-Ni hydride hydrogen desorption kinetics model isothermal condition non-isothermal condition
下载PDF
Hydrogen absorption characteristics and microstructural evolution of TC21 titanium alloy
10
作者 袁宝国 郑育彬 +1 位作者 王玉洁 龚龙清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期599-606,共8页
The hydrogen absorption characteristics and microstructural evolution of TC21 titanium alloy were investigated by kinetic model analysis, optical microscopy (OM) and X-ray diffraction (XRD). The results show that ... The hydrogen absorption characteristics and microstructural evolution of TC21 titanium alloy were investigated by kinetic model analysis, optical microscopy (OM) and X-ray diffraction (XRD). The results show that the hydrogen absorption reaction occurred during the hydrogen absorption process of TC21 titanium alloy can be divided into two different stages according to the hydrogen absorption kinetics. After hydrogenation, the microstructure of TC21 titanium alloy changes obviously. Just a little hydrogen will change the contrast of transformedβphase. The contrast ofα phase darkens when the hydrogen content in TC21 titanium alloy exceeds 0.5% (mass fraction). The phase/grain boundaries become ambiguous or even vanished, andβ phase becomes the main phase instead ofα phase when the hydrogen content reaches 0.625%. Moreover,α phase disappears when the hydrogen content reaches 1.065%. Additionally, the XRD analysis shows that α' martensite and FCCδ hydride appear in the hydrogenated alloy. According to the microstructures and XRD analysis, the schematic diagrams of hydrogen diffusion process in TC21 titanium alloy were established. 展开更多
关键词 TC21 titanium alloy hydrogen absorption characteristics KINETICS MICROSTRUCTURE DIFFUSION
下载PDF
Hydrogen absorption of NdDyFeCoNbCuB sintered magnets 被引量:2
11
作者 罗建军 De Rango P +4 位作者 Fruchart D 梅金娜 胡锐 李金山 周廉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期520-524,共5页
Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement.... Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement. The DSC measurements showed that hydrogenation of Nd-rich phase occurred in the temperature range of 40-185 ℃, hydrogenation of the tetragonal (Ф) phase in the temperature range of 185-220 ℃, as well as the disproportionation of the Ф phase that occurred in a broad temperature range from around 500 to 800 ℃. The hydrogenation kinetics measurements indicated that hydrogen absorption of the bulk magnets at 50 ℃ absorbed more hydrogen than at 150 ℃, although this procedure was slower at 50 ℃ than at 150℃. This phenomenon was discussed by means of pressure-concentration-temperature (p-c-T) diagrams. 展开更多
关键词 hydrogen absorption hydrogen desorption sintered NdDyFeCoNbCuB magnets rare earths
下载PDF
Hydrogen Absorption Thermodynamic Properties of Rare Earth Based Hydrogen Storage Alloy in Benzene 被引量:3
12
作者 蔡官明 陈长聘 +3 位作者 安越 徐国华 陈立新 王启东 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第1期28-30,共3页
The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure compositi... The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure composition isotherms for both the alloy powder and the slurry suspended with MlNi 5 were measured at several temperatures(10, 20, 30, 40 ℃). The standard enthalpy of formation Δ H ° and standard entropy of formation Δ S ° for the alloy powder with and without benzene were determined respectively. The experimental results show that the values of Δ H ° and Δ S ° for the hydriding reaction of hydrogen storage alloy (MlNi 5) of the slurry system and the gas solid system are all very close. 展开更多
关键词 rare earths hydrogen storage alloy organic hydride absorption hydrogen thermodynamic properties
下载PDF
Study on Kinetics of Hydrogen Absorption by Metal Hydride Slurries Ⅰ. Absorption of Hydrogen by Hydrogen Storage Alloy MlNi_5 Suspended in Benzene 被引量:3
13
作者 安越 陈长聘 +2 位作者 徐国华 蔡官明 王启东 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第2期113-115,共3页
The absorption of hydrogen was studied in metal hydride slurry, which is formed by benzene and hydrogen storage alloy powder. The influence of temperature on the rate of absorption was discussed using three phase mas... The absorption of hydrogen was studied in metal hydride slurry, which is formed by benzene and hydrogen storage alloy powder. The influence of temperature on the rate of absorption was discussed using three phase mass transfer model. It is also concluded that the suitable absorption temperature is 313 K. 展开更多
关键词 rare earths hydrogen storage alloys BENZENE SLURRY absorption
下载PDF
Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles 被引量:3
14
作者 Michael Green Anh Thi Van Tran +3 位作者 Russell Smedley Adam Roach James Murowchick Xiaobo Chen 《Nano Materials Science》 CAS 2019年第1期48-59,共12页
Interactions between materials and electromagnetic irradiations in the microwave frequency are critical for many civil and military applications, such as radar detection, communications, information processing and tra... Interactions between materials and electromagnetic irradiations in the microwave frequency are critical for many civil and military applications, such as radar detection, communications, information processing and transport et al. Dipole rotations or magnetic domain resonance are the mainly traditional mechanisms for microwave absorption. The recent finding of the excellent microwave absorption from hydrogenated TiO2 nanoparticles provides us an alternative approach for achieving such absorption, by manipulating the structural defects inside nanoparticles through hydrogenation. In this study, we demonstrate that the microwave absorption can be not only achieved but fine-tuned with TiO2 nanoparticles thermally treated in a Mg/H2 environment. Their position and efficiency can be effectively controlled by the treating temperature. Specifically, the microwave absorption position shifts to the lower frequency region as the treating temperature increases, and there seems to exist an optimal treating temperature to obtain the maximum efficiency, as the absorbing efficiency first increases, and then decreases, with the increase in treatment temperature. Therefore, this study enriches our knowledge and understanding microwave absorption from TiO2-based nanomaterials which may inspire new ideas on other systems to enhance their performance as well. 展开更多
关键词 hydrogenATION REFLECTION loss PERMITTIVITY PERMEABILITY Microwave absorption
下载PDF
Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes 被引量:2
15
作者 Xi-Jun Wu Ze-Jie Fei +8 位作者 Wen-Guan Liu Jie Tan Guang-Hua Wang Dong-Qin Xia Ke Deng Xue-Kun Chen De-Tao Xiao Sheng-Wei Wu Wei Liu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第4期150-158,共9页
Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes were studied by means of first-principles calculations. The structure and stability of continuous hydrogenation in single vacan... Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes were studied by means of first-principles calculations. The structure and stability of continuous hydrogenation in single vacancy were investigated. Several new stable structures were found, along with their corresponding energy barriers. In double-vacancy graphene, the preferred sites of H atoms were identified, and H2 molecule desorption and adsorption of from/on were calculated from the energy barriers. This work provides a systematic and comprehensive understanding of hydrogen behavior on defected graphene. 展开更多
关键词 hydrogen Graphene SINGLE VACANCY DOUBLE VACANCY Adsorption desorption FIRST-PRINCIPLES calculation
下载PDF
Structure of Liquid Aluminum and Hydrogen Absorption 被引量:2
16
作者 柳洋 孙宝德 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第1期93-97,共5页
The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, at... The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, atomic coordination number and viscosity of aluminum melts were calculated and they changed abnormally in the same temperature range. The mechanism of hydrogen absorption has been discussed. From molecular dynamics calculations, the interdependence between melt structural properties and hydrogen absorption were obtained. 展开更多
关键词 hydrogen absorption aluminum melts liquid structure VISCOSITY molecular dynamics simulation
下载PDF
The effects of a static magnetic field on the microwave absorption of hydrogen plasma in carbon nanotubes: a numerical study 被引量:1
17
作者 彭志华 龚学余 +2 位作者 彭延峰 郭燕春 宁艳桃 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期541-545,共5页
We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency r... We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the exter- nal static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma. 展开更多
关键词 carbon nanotubes hydrogen plasma static magnetic field microwave absorption
下载PDF
Palladium-copper nanodot as novel H_(2)-evolution cocatalyst:Optimizing interfacial hydrogen desorption for highly efficient photocatalytic activity 被引量:1
18
作者 Jiachao Xu Duoduo Gao +4 位作者 Huogen Yu Ping Wang Bichen Zhu Linxi Wang Jiajie Fan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第2期215-225,共11页
Noble metal palladium(Pd)is well‐known as excellent photocatalytic cocatalyst,but its strong adsorption to hydrogen causes its limited H2‐evolution activity.In this study,the transition metal Cu was successfully int... Noble metal palladium(Pd)is well‐known as excellent photocatalytic cocatalyst,but its strong adsorption to hydrogen causes its limited H2‐evolution activity.In this study,the transition metal Cu was successfully introduced into the metallic Pd to weaken its hydrogen‐adsorption strength to improve its interfacial H_(2)‐evolution rate via the Pd‐Cu alloying effect.Herein,the ultrasmall Pd_(100−x)Cu_(x) alloy nanodots(2−5 nm)as a novel H_(2)‐evolution cocatalyst were integrated with the TiO_(2) through a simple NaH_(2)PO_(2)‐mediated co‐deposition route.The resulting Pd_(100−x)Cu_(x)/TiO_(2) sample shows the significantly enhanced photocatalytic H_(2)‐generation performance(269.2μmol h^(−1)),which is much higher than the bare TiO2.Based on in situ irradiated X‐ray photoelectron spectroscopy(ISI‐XPS)and density functional theory(DFT)results,the as‐formed Pd_(100−x)Cu_(x) alloy nanodots can effectively promote the separation of photo‐generated charges and weak the adsorption strength for hydrogen to optimize the process of hydrogen‐desorption process on Pd_(75)Cu_(25) alloy,thus leading to high photocatalytic H_(2)‐evolution activity.Herein,the weakened H adsorption of Pd_(75)Cu_(25) cocatalyst can be ascribed to the formation of electron‐rich Pd after the introduction of weak electronegativity Cu.The present work about optimizing electronic structure for promoting interfacial reaction activity provides a new sight for the development of the highly efficient photocatalysts. 展开更多
关键词 Photocatalytic H_(2)evolution TiO_(2) Pd100-xCux alloy Electron-rich Pd hydrogen desorption
下载PDF
Hydrogen release of NaBH_(4) below 60 ℃ with binary eutectic mixture of xylitol and erythritol additive
19
作者 Yugang Shu Jiaguang Zheng +4 位作者 Chengguo Yan Ao Xia Meiling Lv Zhenxuan Ma Zhendong Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期225-234,共10页
NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exh... NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exhibits strong stability and requires temperatures above 500℃ for hydrogen release in practical applications.In this study,two polyhydric alcohols,xylitol and erythritol(XE),were prepared as a binary eutectic sugar alcohol through a grinding-melting method.This binary eutectic sugar alcohol was used as a proton-hydrogen carrier to destabilize NaBH_(4).The 19NaBH_(4)-16XE composite material prepared by ball milling could start releasing hydrogen at 57.5℃,and the total hydrogen release can reach over 88.8%(4.45%(mass))of the theoretical capacity.When the 19NaBH_(4)-16XE composite was pressed into solid blocks,the volumetric hydrogen capacity of the block-shaped composite could reach 67.2 g·L^(–1).By controlling the temperature,the hydrogen desorption capacity of the NaBH_(4)-XE composite material was controllable,which has great potential for achieving solid-state hydrogen production from NaBH_(4). 展开更多
关键词 hydrogen desorption Binary mixture NaBH_(4) XYLITOL ERYTHRITOL
下载PDF
Understanding the dehydrogenation properties of Mg(0001)/MgH_(2)(110)interface from first principles
20
作者 Jianchuan Wang Bo Han +3 位作者 Zhiquan Zeng Shiyi Wen Fen Xu Yong Du 《Materials Reports(Energy)》 EI 2024年第1期89-94,共6页
Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may pl... Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may play a key role in the further dehydrogenation process.In this work,first-principles calculations have been used to understand the dehydrogenation properties of the Mg(0001)/MgH_(2)(110) interface.It is found that the Mg(0001)/MgH_(2)(110) interface can weaken the Mg-H bond.The removal energies for hydrogen atoms in the interface zone are significantly lower compared to those of bulk MgH_(2).In terms of H mobility,hydrogen diffusion within the interface as well as into the Mg matrix is considered.The calculated energy barriers reveal that the migration of hydrogen atoms in the interface zone is easier than that in the bulk MgH_(2).Based on the hydrogen removal energies and diffusion barriers,we conclude that the formation of the Mg(0001)/MgH_(2)(110) interface facilitates the dehydrogenation process of magnesium hydride. 展开更多
关键词 Magnesium hydrides First-principles calculation hydrogen storage materials INTERFACE hydrogen desorption
下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部