Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of re...Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials.展开更多
The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy b...The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy barrier of water dissociation and regulating the binding strength of adsorption intermediates are crucial strategy for boosting the catalytic performance of HER.In this study,RuO_(2)/BaRuO_(3)(RBRO)heterostructures with abundant oxygen vacancies and lattice distortion were in-situ constructed under a low temperature via the thermal decomposition of gel-precursor.The RBRO heterostructures obtained at 550℃ exhibited the highest HER activity in 1 M KOH,showing an ultra-low overpotential of 16 mV at 10 mA cm^(-2)and a Tafel slope of 33.37 m V dec^(-1).Additionally,the material demonstrated remarkable durability,with only 25 mV of degradation in overpotential after 200 h of stability testing at 10 mA cm^(-2).Density functional theory calculations revealed that the redistribution of charges at the heterojunction interface can optimize the binding energies of H*and OH*and effectively lower the energy barrier of water dissociation.This research offers novel perspectives on surpassing the water dissociation threshold of alkaline HER catalysts by means of a systematic design of heterogeneous interfaces.展开更多
The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality...The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.展开更多
Developing highly-active,earth-abundant non-precious-metal catalysts for hydrogen evolution reaction(HER)in alkaline solution would be beneficial to sustainable energy storage.Perovskite oxides are generally regarded ...Developing highly-active,earth-abundant non-precious-metal catalysts for hydrogen evolution reaction(HER)in alkaline solution would be beneficial to sustainable energy storage.Perovskite oxides are generally regarded as low-active HER catalysts,due to their inapposite hydrogen adsorption and water dissociation.Here,we report a detailed study on perovskite LaCoO_(3)epitaxial thin films as a model catalyst to significantly enhance the HER performance via an electrochemical activation process.As a result,the overpotential for the activation films to achieve a current density of 0.36 m A/cm^(2)is 238 m V,reduced by more than 200 m V in comparison with that of original samples.Structural characterization revealed the activation process dramatically increases the concentration of oxygen vacancies(Vo)on the surface of LaCoO_(3).We established the relationship between the electronic structure induced by Vo and the enhanced HER activity.Further theoretical calculations revealed that the Vo optimizes the hydrogen adsorption and dissociation of water on the surface of LaCoO_(3)thin films,thus improving the HER catalytic activity.This work may promote a deepened understanding of perovskite oxides for HER mechanism by Vo adjusting and a new avenue for designing highly active electrochemical catalysts in alkaline solution.展开更多
Developing low-cost and highly-efficient electrocatalysts for renewable energy conversion technologies has attracted even-increasing attention. Molybdenum carbide materials have recently emerged as a type of promising...Developing low-cost and highly-efficient electrocatalysts for renewable energy conversion technologies has attracted even-increasing attention. Molybdenum carbide materials have recently emerged as a type of promising catalysts for electrocatalytic reactions due to the earth-abundance and Pt-resembled electrical properties. In this work, taking the advantage of the interaction between the basic groups of the Mo(VI)-melamine polymer and the acidic groups on the surface of the oxidized carbon nanotubes(CNTs), N-doped CNTs supported Mo2C nanoparticles(Mo2C/NCNT) are prepared, which exhibit outstanding electrocatalytic activity and durability for both the hydrogen evolution and oxygen reduction reactions. The impressive performance of Mo2C/NCNT can be attributed to the small size of Mo2C particles, the large exposure ratio of surface sites and the presence of N-doped CNTs. This work enlarges the multi-field applications of molybdenum carbide-base materials as promising non-precious metal electrocatalysts, which is of great significance for sustainable energy-related technologies.展开更多
Exploring efficient and cost-saving electrocatalysts is essential to the renewable energy storage and utilization,which is still in its embryonic period.MOFs have drawn tremendous attention due to their adjustability,...Exploring efficient and cost-saving electrocatalysts is essential to the renewable energy storage and utilization,which is still in its embryonic period.MOFs have drawn tremendous attention due to their adjustability,abundant active sites,and plentiful pores.Notably,satisfactory electrocatalytic performance has been achieved by MOFs-based electrocatalysts comparable to traditional electrocatalysts.State-of-the-art works about the MOFs-based electrocatalysts for hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and ORR were summarized in this review.This review comprises a series of modifying strategies of MOFs and their derivatives,from aspects of structure,composition,and morphology.Furthermore,the active sites and functional mechanisms’recognition are involved in this review expecting to provide reference for rationally designing efficient electrocatalysts.At last,the current status,challenges,and perspectives of MOFs-based electrocatalysts are also discussed.展开更多
Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption ...Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption property of the core-shell nanorods were well characterized with XRD and TEM. The catalytic activity and stability were electrochemically evaluated with a rotating disk electrode, a rotating ring-disk electrode, and chronopotentiometric methods. The Ru@RuO2 nanorods reveal excellent bifunctional catalytic activity and robust stability for both oxygen evolution reaction(OER) and hydrogen evolution reaction(HER). The overpotentials for OER and HER are 320 m V and 137 m V at the current density of10 m A cm-2, respectively. The catalytic activity of Ru@RuO2 nanorods for OER is 6.5 times higher than that of the state-of-the-art catalyst IrO2 according to the catalytic current density measured at 1.60 V(versus RHE).The catalytic activity of Ru@RuO2 nanorods for HER is comparable to 40%Pt/C by comparing the catalytic current densities at à0.2 V.展开更多
Oxygen vacancies(Vo)in electrocatalysts are closely correlated with the hydrogen evo-lution reaction(HER)activity.The role of vacancy defects and the effect of their concentration,how-ever,yet remains unclear.Herein,B...Oxygen vacancies(Vo)in electrocatalysts are closely correlated with the hydrogen evo-lution reaction(HER)activity.The role of vacancy defects and the effect of their concentration,how-ever,yet remains unclear.Herein,Bi2O3,an unfavorable electrocata-lyst for the HER due to a less than ideal hydrogen adsorption Gibbs free energy(ΔGH*),is utilized as a perfect model to explore the func-tion of Vo on HER performance.Through a facile plasma irradia-tion strategy,Bi2O3 nanosheets with different Vo concentrations are fabricated to evaluate the influence of defects on the HER process.Unexpectedly,while the generated oxygen vacancies contribute to the enhanced HER performance,higher Vo concentrations beyond a saturation value result in a significant drop in HER activity.By tunning the Vo concentration in the Bi_(2)O_(3)nanosheets via adjusting the treatment time,the Bi2O3 catalyst with an optimized oxygen vacancy concentration and detectable charge carrier concentration of 1.52×10^(24)cm^(−3)demonstrates enhanced HER performance with an overpotential of 174.2 mV to reach 10 mA cm^(−2),a Tafel slope of 80 mV dec−1,and an exchange current density of 316 mA cm−2 in an alkaline solution,which approaches the top-tier activity among Bi-based HER electrocatalysts.Density-functional theory calculations confirm the preferred adsorption of H*onto Bi2O3 as a function of oxygen chemical potential(ΔμO)and oxygen partial potential(PO2)and reveal that high Vo concentrations result in excessive stability of adsorbed hydrogen and hence the inferior HER activity.This study reveals the oxygen vacancy concentration-HER catalytic activity relationship and provides insights into activating catalytically inert materials into highly efficient electrocatalysts.展开更多
Electrocatalytic oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER)in acidic media are vital for the applications of renewable energy electrolyzers.However,the low mass activity of noble Pt urgently ne...Electrocatalytic oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER)in acidic media are vital for the applications of renewable energy electrolyzers.However,the low mass activity of noble Pt urgently needs to be improved due to the strong binding energetics of oxygen species(*O)with Pt sites.Here we report fine PtxSr alloy(-2 nm)supported on N-doped carb on(NC)pyrolyzing from ZIF-8 as bifunctional electrocatalysts toward ORR and HER in acidic media.The representative Pt_(2)Sr/NC exhibits an onset potential of 0.94 V vs.RHE and half-wave potential of 0.84 V toward ORR,and a low over-potential of 27 mV(10 mA cm^(-2))toward HER,respectively.Significantly,the mass activities of Pt_(2)Sr/NC are 6.2 and 2.6 times higher than that of Pt/C toward ORR(at 0.9 V)and HER(at-30 mV),respectively.Simultaneously,Pt_(2)Sr/NC possesses a retention rate of 90.97%toward acidic ORR after 35000 s of continuous operation.Through density functional theory(DFT)calculations and X-ray photoelectron spectroscopy analysis,the incorporation of Sr into Pt forming Pt_(2)Sr alloy redistributes the electronic structures of Pt-Pt bonds,changing the rate-determining step for the ORR on Pt sites from the formation of*OH from*O to the generation of*OOH along with decreasing the energy barrier,which is also confirmed by the downshift of d band center.Meanwhile,the downshift of d band center also leads to the optimization of the adsorption energy(H*)with Pt,significantly improving Pt_(2)Sr/NC toward HER.展开更多
Simultaneous heterostructure and composition engineering is an effective route to construct electrocatalyst of high performance. Conjugated microporous polymer(CMP) is a new emerging platform material with designable ...Simultaneous heterostructure and composition engineering is an effective route to construct electrocatalyst of high performance. Conjugated microporous polymer(CMP) is a new emerging platform material with designable porosity and functionality. Here, a facile CMP-guest chemistry method was presented to prepare PdP2@Pd/C heterostructure with bifunctional electrocatalytic activity. The formation of heterostructure relies on a CMP precursor consisting of nitrogen groups that allow binding Pd species and introducing phosphorus inclusion. The Pd-bound CMP precursor formed in-situ could be directly converted into nitrogen-and phosphide-doped porous carbon(NPC) during pyrolysis, while P diffused to the Pd/C interface results in shallow phosphorization. The as-prepared NPC consisting of PdP2@Pd/C(Pd content 4 wt%) heterostructure demonstrated significantly enhanced electrocatalytic performances including a promising HER activity(58mV @ 10 mA/cm2), and an ORR activity approaching commercial 20 wt% Pd/C together with excellent long-term stability. Our work illustrates the intriguing power of CMP-guest potential in heterostructure engineering.展开更多
Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process ...Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process of pure Mg at different impurity levels in NaCl electrolyte with the assistance of local techniques.A finite element based numerical model taking into account the contribution of ORR during the corrosion of the Mg test materials has been designed in this study considering the local oxygen concentration.Respective computational simulations were calibrated based on the experimental data and evaluated accordingly.Finally,the simultaneous monitoring of local concentration of H_(2) and O_(2),and the combined modeling study reveal the relation between ORR and hydrogen evolution reaction.展开更多
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites...Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.展开更多
The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-perf...The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-performance electro-catalysts.Currently,heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications.Compared to conventional cata-lysts,atomically dispersed metal atoms in carbon-based catalysts have more unsatu-rated coordination sites,quantum size effect,and strong metal-support interactions,resulting in exceptional catalytic activity.Of these,dual-atomic catalysts(DACs)have attracted extensive attention due to the additional synergistic effect between two adja-cent metal atoms.DACs have the advantages of full active site exposure,high selectiv-ity,theoretical 100%atom utilization,and the ability to break the scaling relationship of adsorption free energy on active sites.In this review,we summarize recent research advancement of DACs,which includes(1)the comprehensive understanding of the synergy between atomic pairs;(2)the synthesis of DACs;(3)characterization meth-ods,especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy;and(4)electrochemical energy-related applications.The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules,such as oxygen reduction reaction,CO_(2) reduction reaction,hydrogen evolution reaction,and N_(2) reduction reaction.The future research challenges and opportunities are also raised in prospective section.展开更多
Anion exchange membrane(AEM)water electrolyzers are promising energy devices for the production of clean hydrogen from seawater.However,the lack of active and robust electrocatalysts for the oxygen evolution reaction(...Anion exchange membrane(AEM)water electrolyzers are promising energy devices for the production of clean hydrogen from seawater.However,the lack of active and robust electrocatalysts for the oxygen evolution reaction(OER)severely impedes the development of this technology.In this study,a ternary layered double hydroxide(LDH)OER electrocatalyst(NiFeCo-LDH)is developed for high-performance AEM alkaline seawater electrolyzers.The AEM alkaline seawater electrolyzer catalyzed by the NiFeCo LDH shows high seawater electrolysis performance(0.84 A/cm^(2)at 1.7 Vcell)and high hydrogen production efficiency(77.6%at 0.5 A/cm^(2)),thus outperforming an electrolyzer catalyzed by a benchmark IrO_(2)electrocatalyst.The NiFeCo-LDH electrocatalyst greatly improves the kinetics of the AEM alkaline seawater electrolyzer,consequently reducing its activation loss and leading to high performance.Based on the results,this NiFeCo-LDH-catalyzed AEM alkaline seawater electrolyzer can likely surpass the energy conversion targets of the US Department of Energy.展开更多
This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OE...This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)in alkaline media.Specifically,the nitrogen-doped carbon nanofiber-supported Ni-doped CoP_(3) with rich P defects(Pv·)on the carbon cloth(p-NiCoP/NCFs@CC)is synthesized through a plasma-assisted phosphorization method.The p-NiCoP/NCFs@CC is an efficient and stable catalyst for the HER and the OER.It only needs overpotentials of 107 and 306 mV to drive 100 mA cm^(-2) for the HER and the OER,respectively.Its catalytic activities are higher than those of other catalysts reported recently.The high activities of the p-NiCoP/NCFs@CC mainly arise from its peculiar structural features.The density functional theory calculation indicates that the Pv·richness,the Ni doping,and the carbon supporting can optimize the adsorption of the H atoms at the catalyst surface and promote the strong electronic couplings between the carbon nanofiber-supported p-NiCoP with the surface oxide layer formed during the OER process.This gives the p-NiCoP/NCFs@CC with the high activities for the HER and the OER.When used in alkaline water electrolyzers,the p-NiCoP/NCFs@CC shows the superior activity and excellent stability for overall water splitting.展开更多
Electrocatalytic water splitting shows a tremendous promise for storing green and intermittent electricity into storable fuels,paving a sustainable way toward carbon neutrality. The exploration of a bifunctional elect...Electrocatalytic water splitting shows a tremendous promise for storing green and intermittent electricity into storable fuels,paving a sustainable way toward carbon neutrality. The exploration of a bifunctional electrocatalyst for simultaneously enhancing oxygen evolution reaction and hydrogen evolution reaction is at the core yet remains a grand challenge, especially operated in the same electrolyte. In this work, mesoscale gold nanoarrows with special chiral morphology are synthesized for electrocatalytic water splitting. In the same electrolyte of 1 M KOH aqueous solution, the as-designed chiral R-/L-helically grooved gold nanoarrows(R-/L-heli GNAs) demonstrated significantly enhanced performance in both hydrogen evolution reaction and oxygen evolution reaction with overpotentials of 186 and 355 m V at 10 m A cm^(-2), respectively, compared to the achiral counterpart. For oxygen evolution reaction, the performance is even comparable to commercial notable metal catalysts,i.e., RuO_(2), of which the overpotential is 310 m V under the same measured conditions. The spin-polarized conductive atomic force microscope(c-AFM), finite-difference time-domain simulation, in combination with electrochemical investigations, show that the chirality of R-/L-heli GNAs makes a substantial contribution toward the remarkable performance by enhanced electric field distribution for hydrogen evolution reaction and by tuning the spin states of the electrons for oxygen evolution reaction.This study presents an encouraging strategy for simultaneously promoting hydrogen evolution reaction and oxygen evolution reaction that operated in the same electrolyte by imparting chirality toward a mesoscale inorganic electrocatalyst, showing a grand promise for opening up a new way for electrocatalytic water splitting toward green hydrogen.展开更多
Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and i...Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER).展开更多
Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from...Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from water and oxygen of air is highly desirable for daily life and industry.We report an effective electrochemical refinery(e-refinery)for H_(2)O_(2)by means of electrocatalysis-controlled comproportionation reaction(2_(H)O+o→2HO),feeding pure water and oxygen only.Mesoporous nickel(Ⅱ)oxide(NiO)was used as electrocatalyst for oxygen evolution reaction(OER),producing oxygen at the anode.Conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)drove the oxygen reduction reaction(ORR),forming H_(2)O_(2)on the cathode.The reactions were evaluated in both half-cell and device configurations.The performance of the H_(2)O_(2)e-refinery,assembled on anion-exchange solid electrolyte and fed with pure water,was limited by the unbalanced ionic transport.Optimization of the operation conditions allowed a conversion efficiency of 80%.展开更多
Catalytic water splitting potentially reduce the consumption of fossil fuels and has received intense research attention.Synergy effects in multi‐element transition metal‐based water splitting catalysts have evoked ...Catalytic water splitting potentially reduce the consumption of fossil fuels and has received intense research attention.Synergy effects in multi‐element transition metal‐based water splitting catalysts have evoked special interests.Studies on catalysts in interfacial structures are especially meaningful due to their pertinence in applications.In this study,we report the synergy effects in promoting catalytic power in the ternary transition metal Zn,Co,Ni alloy nanoparticles that embeds in the carbonized Ppy/CNT multilayered matrix.By comparison with a series of binary or single metal counterparts,the mechanism under the synergy effects are elucidated.Experimental and DFT calculation results indicate that the ternary transition metal catalysts in the N‐doped carbon matrix present special electronic structure,which benefits the reversible transition‐state adsorption in HER and OER and render the catalysts high conductivity in room temperature.We expect our findings inspire further development of efficient transition metal HER and OER catalysts.展开更多
Electrochemical water splitting is one of the most reliable approaches for environmental-friendly hydrogen production.Because of their stability and abundance,Mn-based materials have been studied as electrocatalysts f...Electrochemical water splitting is one of the most reliable approaches for environmental-friendly hydrogen production.Because of their stability and abundance,Mn-based materials have been studied as electrocatalysts for the oxygen evolution reaction(OER),which is a more sluggish reaction in the water splitting system.To increase the OER activity of Mn,it is imperative to facilitate the structural change of Mn oxide to the active phase with Mn_(3)+species,known as the active site.Here,we present the relationship between the electronic conductivity in the catalyst layer and the formation of the Mn active phase,δ-MnO_(2),from wrinkled Mn(OH)_(2).Mn(OH)_(2) has poor conductivity,and it disrupts the oxidation reaction toward MnOOH orδ-MnO_(2).Adjacent conductive carbon to Mn(OH)_(2) enabled Mn(OH)_(2) to be oxidized toδ-MnO_(2).Furthermore,after repetitive cyclic voltammetry activation,the more conductive environment resulted in a higher density ofδ-MnO_(2) through the irreversible phase transition,and thus it contributes to the improvement of the OER activity.展开更多
基金funding support from the National Natural Science Foundation of China(2200206852272222,and 52072197)+12 种基金the Taishan Scholar Young Talent Program(tsqn201909114)the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(2019KJC004)the Outstanding Youth Foundation of Shandong Province,China(ZR2019JQ14)the Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020ZD09Youth Innovation Team Development Program of Shandong Higher Education Institutions(2022KJ155)the Major Scientific and Technological Innovation Project(2019JZZY020405)the Shandong Province“Double-Hundred Talent Plan”(WST2020003)Project funded by the China Postdoctoral Science Foundation(2021M691700)the Natural Science Foundation of Shandong Province of China(ZR2019BB002ZR2018BB031)the Postdoctoral Innovation Project of Shandong Province(SDCXZG-202203021)the Scientific and Technological Innovation Promotion Project for Small-medium Enterprises of Shandong Province(2022TSGC1257)the Major Research Program of Jining City(2020ZDZP024)。
文摘Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials.
基金supported by the National Natural Science Foundation of China (21721003,22202080 and 22034006)。
文摘The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy barrier of water dissociation and regulating the binding strength of adsorption intermediates are crucial strategy for boosting the catalytic performance of HER.In this study,RuO_(2)/BaRuO_(3)(RBRO)heterostructures with abundant oxygen vacancies and lattice distortion were in-situ constructed under a low temperature via the thermal decomposition of gel-precursor.The RBRO heterostructures obtained at 550℃ exhibited the highest HER activity in 1 M KOH,showing an ultra-low overpotential of 16 mV at 10 mA cm^(-2)and a Tafel slope of 33.37 m V dec^(-1).Additionally,the material demonstrated remarkable durability,with only 25 mV of degradation in overpotential after 200 h of stability testing at 10 mA cm^(-2).Density functional theory calculations revealed that the redistribution of charges at the heterojunction interface can optimize the binding energies of H*and OH*and effectively lower the energy barrier of water dissociation.This research offers novel perspectives on surpassing the water dissociation threshold of alkaline HER catalysts by means of a systematic design of heterogeneous interfaces.
基金support from the National Natural Science Foundation of China(No.22005147)Dr.You acknowledges the financial support from the National Key Research and Development Program of China(2021YFA1600800)+1 种基金the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003)the Open Research Fund of Key Laboratory of Material Chemistry for Energy Conversion and Storage(HUST),Ministry of Education(2021JYBKF03).
文摘The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
基金funding support by the National Natural Science Foundation of China(Grant No.21872116 and 22075232)the Mobility Program of the Sino-German Center for Research Promotion(Grant No.M-0377)the financial support by National Natural Science Foundation of China(Grant No.21991151,21991150,22021001)。
文摘Developing highly-active,earth-abundant non-precious-metal catalysts for hydrogen evolution reaction(HER)in alkaline solution would be beneficial to sustainable energy storage.Perovskite oxides are generally regarded as low-active HER catalysts,due to their inapposite hydrogen adsorption and water dissociation.Here,we report a detailed study on perovskite LaCoO_(3)epitaxial thin films as a model catalyst to significantly enhance the HER performance via an electrochemical activation process.As a result,the overpotential for the activation films to achieve a current density of 0.36 m A/cm^(2)is 238 m V,reduced by more than 200 m V in comparison with that of original samples.Structural characterization revealed the activation process dramatically increases the concentration of oxygen vacancies(Vo)on the surface of LaCoO_(3).We established the relationship between the electronic structure induced by Vo and the enhanced HER activity.Further theoretical calculations revealed that the Vo optimizes the hydrogen adsorption and dissociation of water on the surface of LaCoO_(3)thin films,thus improving the HER catalytic activity.This work may promote a deepened understanding of perovskite oxides for HER mechanism by Vo adjusting and a new avenue for designing highly active electrochemical catalysts in alkaline solution.
基金supported by the National Natural Science Foundation of China(21421001 , 21573115)the 111 project (B12015)+1 种基金the Fundamental Research Funds for the Central Universities(63185015)the Foundation of State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering (2017-K13)
文摘Developing low-cost and highly-efficient electrocatalysts for renewable energy conversion technologies has attracted even-increasing attention. Molybdenum carbide materials have recently emerged as a type of promising catalysts for electrocatalytic reactions due to the earth-abundance and Pt-resembled electrical properties. In this work, taking the advantage of the interaction between the basic groups of the Mo(VI)-melamine polymer and the acidic groups on the surface of the oxidized carbon nanotubes(CNTs), N-doped CNTs supported Mo2C nanoparticles(Mo2C/NCNT) are prepared, which exhibit outstanding electrocatalytic activity and durability for both the hydrogen evolution and oxygen reduction reactions. The impressive performance of Mo2C/NCNT can be attributed to the small size of Mo2C particles, the large exposure ratio of surface sites and the presence of N-doped CNTs. This work enlarges the multi-field applications of molybdenum carbide-base materials as promising non-precious metal electrocatalysts, which is of great significance for sustainable energy-related technologies.
基金supported by the National Key R&D Program of China(No.2018YFA0108300)the Overseas High-level Talents Plan of China and Guangdong Province+3 种基金the Fundamental Research Funds for the Central Universitiesthe 100 Talents Plan Foundation of Sun Yat-sen Universitythe Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2017ZT07C069)the National Natural Science Foundation of China(Nos.22075321,21821003,21890380,and 21905315).
文摘Exploring efficient and cost-saving electrocatalysts is essential to the renewable energy storage and utilization,which is still in its embryonic period.MOFs have drawn tremendous attention due to their adjustability,abundant active sites,and plentiful pores.Notably,satisfactory electrocatalytic performance has been achieved by MOFs-based electrocatalysts comparable to traditional electrocatalysts.State-of-the-art works about the MOFs-based electrocatalysts for hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and ORR were summarized in this review.This review comprises a series of modifying strategies of MOFs and their derivatives,from aspects of structure,composition,and morphology.Furthermore,the active sites and functional mechanisms’recognition are involved in this review expecting to provide reference for rationally designing efficient electrocatalysts.At last,the current status,challenges,and perspectives of MOFs-based electrocatalysts are also discussed.
基金the U.S.Department of the ArmyU.S.Army Materiel Command for supporting this work
文摘Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption property of the core-shell nanorods were well characterized with XRD and TEM. The catalytic activity and stability were electrochemically evaluated with a rotating disk electrode, a rotating ring-disk electrode, and chronopotentiometric methods. The Ru@RuO2 nanorods reveal excellent bifunctional catalytic activity and robust stability for both oxygen evolution reaction(OER) and hydrogen evolution reaction(HER). The overpotentials for OER and HER are 320 m V and 137 m V at the current density of10 m A cm-2, respectively. The catalytic activity of Ru@RuO2 nanorods for OER is 6.5 times higher than that of the state-of-the-art catalyst IrO2 according to the catalytic current density measured at 1.60 V(versus RHE).The catalytic activity of Ru@RuO2 nanorods for HER is comparable to 40%Pt/C by comparing the catalytic current densities at à0.2 V.
基金This work was financially supported by the Australian Research Council(ARC)through Future Fellowship grants(FT180100387 and FT160100281)Discovery Projects(DP200103568,DP210100472,and DP200102546)+1 种基金WL thanks the support of the Science and Technology Commission of Shanghai Municipality(19520713200)Open access funding provided by Shanghai Jiao Tong University
文摘Oxygen vacancies(Vo)in electrocatalysts are closely correlated with the hydrogen evo-lution reaction(HER)activity.The role of vacancy defects and the effect of their concentration,how-ever,yet remains unclear.Herein,Bi2O3,an unfavorable electrocata-lyst for the HER due to a less than ideal hydrogen adsorption Gibbs free energy(ΔGH*),is utilized as a perfect model to explore the func-tion of Vo on HER performance.Through a facile plasma irradia-tion strategy,Bi2O3 nanosheets with different Vo concentrations are fabricated to evaluate the influence of defects on the HER process.Unexpectedly,while the generated oxygen vacancies contribute to the enhanced HER performance,higher Vo concentrations beyond a saturation value result in a significant drop in HER activity.By tunning the Vo concentration in the Bi_(2)O_(3)nanosheets via adjusting the treatment time,the Bi2O3 catalyst with an optimized oxygen vacancy concentration and detectable charge carrier concentration of 1.52×10^(24)cm^(−3)demonstrates enhanced HER performance with an overpotential of 174.2 mV to reach 10 mA cm^(−2),a Tafel slope of 80 mV dec−1,and an exchange current density of 316 mA cm−2 in an alkaline solution,which approaches the top-tier activity among Bi-based HER electrocatalysts.Density-functional theory calculations confirm the preferred adsorption of H*onto Bi2O3 as a function of oxygen chemical potential(ΔμO)and oxygen partial potential(PO2)and reveal that high Vo concentrations result in excessive stability of adsorbed hydrogen and hence the inferior HER activity.This study reveals the oxygen vacancy concentration-HER catalytic activity relationship and provides insights into activating catalytically inert materials into highly efficient electrocatalysts.
基金supported by the Fundamental Research Funds for the Central Universities (2020XZZX002-07)the National Natural Science Foundation of China (21776248, 21676246)supported by Major Scientific Project of Zhejiang Lab, Grant/Award Numbers: 2020MC0AD01.
文摘Electrocatalytic oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER)in acidic media are vital for the applications of renewable energy electrolyzers.However,the low mass activity of noble Pt urgently needs to be improved due to the strong binding energetics of oxygen species(*O)with Pt sites.Here we report fine PtxSr alloy(-2 nm)supported on N-doped carb on(NC)pyrolyzing from ZIF-8 as bifunctional electrocatalysts toward ORR and HER in acidic media.The representative Pt_(2)Sr/NC exhibits an onset potential of 0.94 V vs.RHE and half-wave potential of 0.84 V toward ORR,and a low over-potential of 27 mV(10 mA cm^(-2))toward HER,respectively.Significantly,the mass activities of Pt_(2)Sr/NC are 6.2 and 2.6 times higher than that of Pt/C toward ORR(at 0.9 V)and HER(at-30 mV),respectively.Simultaneously,Pt_(2)Sr/NC possesses a retention rate of 90.97%toward acidic ORR after 35000 s of continuous operation.Through density functional theory(DFT)calculations and X-ray photoelectron spectroscopy analysis,the incorporation of Sr into Pt forming Pt_(2)Sr alloy redistributes the electronic structures of Pt-Pt bonds,changing the rate-determining step for the ORR on Pt sites from the formation of*OH from*O to the generation of*OOH along with decreasing the energy barrier,which is also confirmed by the downshift of d band center.Meanwhile,the downshift of d band center also leads to the optimization of the adsorption energy(H*)with Pt,significantly improving Pt_(2)Sr/NC toward HER.
基金Sponsored by the National Natural Science Foundation of China (Grant Nos.52073046, 51873036, 51673039 and 21972163)the National Natural Science Foundation of Shanghai (Grant No.19ZR1470900)+3 种基金the Shanghai Shuguang Program (Grant No.19SG28)the Distinguished Young Professor Program (Donghua University)the Program of Shanghai Academic Research Leader (Grant No.21XD1420200)the International Joint Laboratory for Advanced Fiber and Low-Dimension Materials (Grant No.18520750400)。
文摘Simultaneous heterostructure and composition engineering is an effective route to construct electrocatalyst of high performance. Conjugated microporous polymer(CMP) is a new emerging platform material with designable porosity and functionality. Here, a facile CMP-guest chemistry method was presented to prepare PdP2@Pd/C heterostructure with bifunctional electrocatalytic activity. The formation of heterostructure relies on a CMP precursor consisting of nitrogen groups that allow binding Pd species and introducing phosphorus inclusion. The Pd-bound CMP precursor formed in-situ could be directly converted into nitrogen-and phosphide-doped porous carbon(NPC) during pyrolysis, while P diffused to the Pd/C interface results in shallow phosphorization. The as-prepared NPC consisting of PdP2@Pd/C(Pd content 4 wt%) heterostructure demonstrated significantly enhanced electrocatalytic performances including a promising HER activity(58mV @ 10 mA/cm2), and an ORR activity approaching commercial 20 wt% Pd/C together with excellent long-term stability. Our work illustrates the intriguing power of CMP-guest potential in heterostructure engineering.
基金the China Scholarship Council for the award of fellowship and funding(No.201806310128,201908510177)。
文摘Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process of pure Mg at different impurity levels in NaCl electrolyte with the assistance of local techniques.A finite element based numerical model taking into account the contribution of ORR during the corrosion of the Mg test materials has been designed in this study considering the local oxygen concentration.Respective computational simulations were calibrated based on the experimental data and evaluated accordingly.Finally,the simultaneous monitoring of local concentration of H_(2) and O_(2),and the combined modeling study reveal the relation between ORR and hydrogen evolution reaction.
基金the financial support from the Natural Science Foundation of China(Grant No.52172106)Anhui Provincial Natural Science Foundation(Grant Nos.2108085QB60 and 2108085QB61)China Postdoctoral Science Foundation(Grant Nos.2020M682057 and 2023T160651).
文摘Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.
基金This work was financially supported by the National Key Research and Development Program of China(2018YFA0702002)the Beijing Natural Science Foundation(Z210016)+1 种基金the National Natural Science Foundation of China(51967020,21935001)Shanxi Energy Internet Research Institute(SXEI 2023A004).
文摘The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-performance electro-catalysts.Currently,heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications.Compared to conventional cata-lysts,atomically dispersed metal atoms in carbon-based catalysts have more unsatu-rated coordination sites,quantum size effect,and strong metal-support interactions,resulting in exceptional catalytic activity.Of these,dual-atomic catalysts(DACs)have attracted extensive attention due to the additional synergistic effect between two adja-cent metal atoms.DACs have the advantages of full active site exposure,high selectiv-ity,theoretical 100%atom utilization,and the ability to break the scaling relationship of adsorption free energy on active sites.In this review,we summarize recent research advancement of DACs,which includes(1)the comprehensive understanding of the synergy between atomic pairs;(2)the synthesis of DACs;(3)characterization meth-ods,especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy;and(4)electrochemical energy-related applications.The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules,such as oxygen reduction reaction,CO_(2) reduction reaction,hydrogen evolution reaction,and N_(2) reduction reaction.The future research challenges and opportunities are also raised in prospective section.
基金supported by the Fundamental Research Program of the Korean Institute of Materials Science(PNK7550)the National Research Council of Science&Technology(NST)grant by the MSIT(CAP21000-000)the New&Renewable Energy Core Technology Program of the KETEP(20213030040520)in the Republic of Korea。
文摘Anion exchange membrane(AEM)water electrolyzers are promising energy devices for the production of clean hydrogen from seawater.However,the lack of active and robust electrocatalysts for the oxygen evolution reaction(OER)severely impedes the development of this technology.In this study,a ternary layered double hydroxide(LDH)OER electrocatalyst(NiFeCo-LDH)is developed for high-performance AEM alkaline seawater electrolyzers.The AEM alkaline seawater electrolyzer catalyzed by the NiFeCo LDH shows high seawater electrolysis performance(0.84 A/cm^(2)at 1.7 Vcell)and high hydrogen production efficiency(77.6%at 0.5 A/cm^(2)),thus outperforming an electrolyzer catalyzed by a benchmark IrO_(2)electrocatalyst.The NiFeCo-LDH electrocatalyst greatly improves the kinetics of the AEM alkaline seawater electrolyzer,consequently reducing its activation loss and leading to high performance.Based on the results,this NiFeCo-LDH-catalyzed AEM alkaline seawater electrolyzer can likely surpass the energy conversion targets of the US Department of Energy.
基金supports from the Zhejiang Provincial Natural Science Foundation(No.LR22E070001)the National Natural Science Foundation of China(Nos.12275239 and 11975205)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120048)the Fundamental Research Funds of Zhejiang Sci-Tech University(No.23062096-Y).
文摘This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)in alkaline media.Specifically,the nitrogen-doped carbon nanofiber-supported Ni-doped CoP_(3) with rich P defects(Pv·)on the carbon cloth(p-NiCoP/NCFs@CC)is synthesized through a plasma-assisted phosphorization method.The p-NiCoP/NCFs@CC is an efficient and stable catalyst for the HER and the OER.It only needs overpotentials of 107 and 306 mV to drive 100 mA cm^(-2) for the HER and the OER,respectively.Its catalytic activities are higher than those of other catalysts reported recently.The high activities of the p-NiCoP/NCFs@CC mainly arise from its peculiar structural features.The density functional theory calculation indicates that the Pv·richness,the Ni doping,and the carbon supporting can optimize the adsorption of the H atoms at the catalyst surface and promote the strong electronic couplings between the carbon nanofiber-supported p-NiCoP with the surface oxide layer formed during the OER process.This gives the p-NiCoP/NCFs@CC with the high activities for the HER and the OER.When used in alkaline water electrolyzers,the p-NiCoP/NCFs@CC shows the superior activity and excellent stability for overall water splitting.
基金supported by the National Key Research and Development Program of China (2023YFB4004900)the Shanghai Municipal Science and Technology Major Project+2 种基金the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University (21TQ1400211)the National Natural Science Foundation of China (22109095)the Startup Fund of Shanghai Jiao Tong University and the State Key Laboratory of Artificial Microstructure and Mesoscopic Physics。
文摘Electrocatalytic water splitting shows a tremendous promise for storing green and intermittent electricity into storable fuels,paving a sustainable way toward carbon neutrality. The exploration of a bifunctional electrocatalyst for simultaneously enhancing oxygen evolution reaction and hydrogen evolution reaction is at the core yet remains a grand challenge, especially operated in the same electrolyte. In this work, mesoscale gold nanoarrows with special chiral morphology are synthesized for electrocatalytic water splitting. In the same electrolyte of 1 M KOH aqueous solution, the as-designed chiral R-/L-helically grooved gold nanoarrows(R-/L-heli GNAs) demonstrated significantly enhanced performance in both hydrogen evolution reaction and oxygen evolution reaction with overpotentials of 186 and 355 m V at 10 m A cm^(-2), respectively, compared to the achiral counterpart. For oxygen evolution reaction, the performance is even comparable to commercial notable metal catalysts,i.e., RuO_(2), of which the overpotential is 310 m V under the same measured conditions. The spin-polarized conductive atomic force microscope(c-AFM), finite-difference time-domain simulation, in combination with electrochemical investigations, show that the chirality of R-/L-heli GNAs makes a substantial contribution toward the remarkable performance by enhanced electric field distribution for hydrogen evolution reaction and by tuning the spin states of the electrons for oxygen evolution reaction.This study presents an encouraging strategy for simultaneously promoting hydrogen evolution reaction and oxygen evolution reaction that operated in the same electrolyte by imparting chirality toward a mesoscale inorganic electrocatalyst, showing a grand promise for opening up a new way for electrocatalytic water splitting toward green hydrogen.
基金supported by the research program funded by the TKG Huchemssupported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea(20213030040590)supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2021R1A5A1028138)。
文摘Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER).
基金the competence centre Fun Mat-II funded by the Swedish Agency for Innovation Systems(Vinnova,grant no 2016-05156)Swedish Energy Agency(project no 42022-1)+3 种基金Swedish Research Council(VR 2021-04427,VR 2019-05577,VR 2016–05990)the Centre in Nanoscience and Technology(CeNano,Linkoping Institute of Technology(LiTH),Linkoping University,2020,2021)the Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University(Faculty Grant SFO-Mat-Li U No.2009-00971)the Knut and Alice Wal enberg Foundation(H2O2,KAW 2018.0058),for support
文摘Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from water and oxygen of air is highly desirable for daily life and industry.We report an effective electrochemical refinery(e-refinery)for H_(2)O_(2)by means of electrocatalysis-controlled comproportionation reaction(2_(H)O+o→2HO),feeding pure water and oxygen only.Mesoporous nickel(Ⅱ)oxide(NiO)was used as electrocatalyst for oxygen evolution reaction(OER),producing oxygen at the anode.Conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)drove the oxygen reduction reaction(ORR),forming H_(2)O_(2)on the cathode.The reactions were evaluated in both half-cell and device configurations.The performance of the H_(2)O_(2)e-refinery,assembled on anion-exchange solid electrolyte and fed with pure water,was limited by the unbalanced ionic transport.Optimization of the operation conditions allowed a conversion efficiency of 80%.
文摘Catalytic water splitting potentially reduce the consumption of fossil fuels and has received intense research attention.Synergy effects in multi‐element transition metal‐based water splitting catalysts have evoked special interests.Studies on catalysts in interfacial structures are especially meaningful due to their pertinence in applications.In this study,we report the synergy effects in promoting catalytic power in the ternary transition metal Zn,Co,Ni alloy nanoparticles that embeds in the carbonized Ppy/CNT multilayered matrix.By comparison with a series of binary or single metal counterparts,the mechanism under the synergy effects are elucidated.Experimental and DFT calculation results indicate that the ternary transition metal catalysts in the N‐doped carbon matrix present special electronic structure,which benefits the reversible transition‐state adsorption in HER and OER and render the catalysts high conductivity in room temperature.We expect our findings inspire further development of efficient transition metal HER and OER catalysts.
基金supported by the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)。
文摘Electrochemical water splitting is one of the most reliable approaches for environmental-friendly hydrogen production.Because of their stability and abundance,Mn-based materials have been studied as electrocatalysts for the oxygen evolution reaction(OER),which is a more sluggish reaction in the water splitting system.To increase the OER activity of Mn,it is imperative to facilitate the structural change of Mn oxide to the active phase with Mn_(3)+species,known as the active site.Here,we present the relationship between the electronic conductivity in the catalyst layer and the formation of the Mn active phase,δ-MnO_(2),from wrinkled Mn(OH)_(2).Mn(OH)_(2) has poor conductivity,and it disrupts the oxidation reaction toward MnOOH orδ-MnO_(2).Adjacent conductive carbon to Mn(OH)_(2) enabled Mn(OH)_(2) to be oxidized toδ-MnO_(2).Furthermore,after repetitive cyclic voltammetry activation,the more conductive environment resulted in a higher density ofδ-MnO_(2) through the irreversible phase transition,and thus it contributes to the improvement of the OER activity.