The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,w...The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province.展开更多
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic...Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of-7.8‰ and -53.0‰ for δ^18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from -10.6‰ to -6.0‰ with an average of-8.4‰ for δ^18O and from -85‰ to -46‰ with an average of-63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from -11.6‰ to -8.8‰ with an average of -10.2‰ for δ^18O and from -89‰ to -63‰ with an average of -76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of ^14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.展开更多
Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to invest...Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to investigate the root water uptake mechanisms of winter wheat (Triticum aesfivum L.) under different irrigation depths in the North China Plain. Both direct inference approach and multisource linear mixing model were applied to estimate the distribution of water uptake with depth in six growing stages. Results showed that winter wheat under land surface irrigation treatment (Ts) mainly absorbed water from 10-20 cm soil layers in the wintering and green stages (66.9 and 72.0%, respectively); 0-20 cm (57.0%) in the jointing stage; 0-40 (15.3%) and 80-180 cm (58.1%) in the heading stage; 60-80 (13.2%) and 180-220 cm (35.5%) in the filling stage; and 0-40 (46.8%) and 80-100 cm (31.0%) in the ripening stage. Winter wheat under whole soil layers irrigation treatment (Tw) absorbed more water from deep soil layer than Ts in heading, filling and ripening stages. Moreover, root cell activity and root length density of winter wheat under TW were significantly greater than that of Ts in the three stages. We concluded that distribution of water uptake with depth was affected by the availability of water sources, the root length density and root cell activity. Implementation of the whole soil layers irrigation method can affect root system distribution and thereby increase water use from deeper soil and enhance water use efficiency.展开更多
Isotopic and chemical compositions of pore water(PW) are highly relevant to environmental and forensic study. Five lake water(LW)samples and five sediment samples were collected to investigate the effects of pore size...Isotopic and chemical compositions of pore water(PW) are highly relevant to environmental and forensic study. Five lake water(LW)samples and five sediment samples were collected to investigate the effects of pore sizes of sediments on PW chemistry and stable isotopes and determine mechanisms controlling their variations. Six pore water fractions were extracted from different-sized pores in each sediment sample at six sequential centrifugal speeds for chemical and isotopic analysis. The sediments consisted mainly of quartz, feldspar, and clay minerals. The hydrogen and oxygen isotopic compositions of PW are mainly controlled by the overlying LW, although the lag effect of exchange between overlying LW and PW results in isotopic differences when recharge of LW is quicker than isotopic exchange in PW. Identical isotopic compositions of PW from sediments with different pore sizes indicate that isotopic exchange of water molecules with different pore sizes is a quick process. The ratio of average total dissolved solid(TDS) concentration of PW to TDS concentration of LW shows a strong relationship with adsorption capacity of sediments, demonstrating that remobilization of ions bound to sediments mainly causes a chemical shift from LW to PW.Concentrations of Ca^(2+), Mg^(2+),and Cl^-in PW remain unchanged,while concentrations of Na^+,K^+,and SO_4^(2-) slightly increase with decreasing pore size. Chemical differences of PW from sediments with different pore sizes are governed by ion adsorption properties and surface characteristics of different-si zed particles.展开更多
According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperatu...According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperature and residence time of groundwater in the Weishan area of Wudalianchi, also calculating the contribution of noble gas components from different sources to the samples. Based on the characteristics of hydrogen and oxygen isotopes and noble gases Xe and Ne, the recharge altitude and recharge temperature of the two aquifers were estimated, and the recharge temperature fitting with the NGT model as verified, the results showing that the main recharge altitude of groundwater in the region was 500–600 m, the recharge temperature being 2–7°C. He_(eq) and He_(ea) of the samples have been simulated using the OD model, the content of radioactive ~4He in the crust being obtained, the groundwater ages under the two conditions(closed condition and open condition) both being simulated. The results show that groundwater from the sandstone layer water is older than groundwater from the basalt layer. Hydrochemical characteristics and noble gas isotope ratios indicate that in the basalt aquifer and sandstone aquifer in the Weishan area, in addition to atmospheric and crustal helium, there is also an input of mantle-derived helium. The fault constitutes the uplift channel for groundwater containings mantle components, which results in the mantle source composition in water samples near the fault being much higher than those form non-fault areas.展开更多
The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and dau...The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daugh- ter-beating inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-tem- perature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ^18O values of chalcopyrite- bearing quartz ranged from 4.96‰ to 5.86%0, with an average of 5.40%0. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from - 87‰ to - 107‰, with an average of - 97.86%0. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ^34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.展开更多
Antarctica’s marginal seas are of great importance to atmosphere-ocean-ice interactions and are sensitive to global climate change.Multiple factors account for the freshwater budget in these regions,including glacier...Antarctica’s marginal seas are of great importance to atmosphere-ocean-ice interactions and are sensitive to global climate change.Multiple factors account for the freshwater budget in these regions,including glacier melting,seasonal formation/decay of sea ice,and precipitation.Hydrogen(H)and oxygen(O)isotopes represent useful proxies for determining the distribution and migration of water masses.We analyzed the H and O isotopic compositions of 190 seawater samples collected from the Amundsen Sea during the 34th Chinese Antarctic Research Expedition in 2017/2018.The upper-oceanic structure(<400 m)and freshwater(meteoric water and sea ice melt)distribution in the Amundsen Sea were identified based on conductivity-temperature-depth data and the H and O isotopic composition.Antarctic Surface Water,characterized as cold and fresh with low H and O isotopic ratios,was found distributed mainly in the upper~150 m between the Antarctic Slope Front and Polar Front,where it had been affected considerably by upwelled Upper Circumpolar Deep Water(UCDW)between 68°S and 71°S.A three-endmember(meteoric water,sea ice melt,and Circumpolar Deep Water)mixing model indicated that waters with relatively high proportions(>3%)of freshwater generally lie in the upper~50 m and extend from Antarctica to~65°S in the meridional direction(anomalously low freshwater proportion occurred between 68°S and 71°S).Winter Water mainly occupied the layer between 50 and 150 m south of 71°S in the western Amundsen Sea.The water structure and spatial distribution of freshwater in the upper Amundsen Sea were found influenced mainly by the rates of basal and surficial melting of ice shelves,seasonal alternation of sea ice melt/formation,wind forcing,and regional bathymetry.Owing to the distance between heavy sea ice boundary(HSIB)and ice shelves is much shorter in the western HSIB than the east HSIB,the western part of the heavy sea ice boundary includes a higher proportion of freshwater than the eastern region.This study,which highlighted the distribution and extent of freshwater derived from ice(ice shelves and sea ice)melt,provides important evidence that the offshore drift pathway of cold and fresh Antarctic continental shelf water is likely interrupted by upwelled UCDW in the Amundsen Sea.展开更多
The Ordovician was an important transitional period for global climate and organic evolution,the global was in the flood and glacial,Onganism was extinction(Zhan,2007;Trotter et al.,2008;Axel et al.,2010).Under the in...The Ordovician was an important transitional period for global climate and organic evolution,the global was in the flood and glacial,Onganism was extinction(Zhan,2007;Trotter et al.,2008;Axel et al.,2010).Under the influence展开更多
By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)...By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)O and δ^(13)C isotope signatures of dolomite samples vary between 10.2 and 13.0‰,and between−7.2 and−5.2‰,respectively,implying that the carbon derives from the upper mantle.δD and δ^(18) O of quartz,biotite,and muscovite from diff erent ore veins of the deposit vary between−82 and−59‰,and between 11.6 and 12.4‰,respectively,implying that the metallogenic solutions are mainly magmatic.According to the relevant research results of many isotope geologists,the fractionation degree of hydrogen isotopes increases as the depth to the Earth’s core increases,and the more diff erentiated the hydrogen isotopes are,the lower their values will be.In other words,mantle-derived solutions can have extremely low hydrogen isotope values.This means that the δD‰ value−134 of the pyrrhotite sample numbered SD-34 in this article may indicate mantle-derived oreforming fl uid of the deposit.The formation of the Dashuigou tellurium deposit occurred between 91.71 and 80.19 Ma.展开更多
This study evaluated the Cretaceous(Campanian–Maastrichtian) kaolinitic sediments of the Ajali/Mamu and Enugu/Nkporo Formations from the Lower Benue Trough of Nigeria. A combined method of inductively coupled plasma...This study evaluated the Cretaceous(Campanian–Maastrichtian) kaolinitic sediments of the Ajali/Mamu and Enugu/Nkporo Formations from the Lower Benue Trough of Nigeria. A combined method of inductively coupled plasma–mass spectrometry and isotope ratio mass spectrometry was used to investigate trace and rareearth element geochemistry and hydrogen and oxygen isotopic compositions. These data were then used to infer the sediments' provenance and paleoclimatic conditions during their deposition. The sediments contained low concentrations of most trace elements, with the exceptions of Zr(651–1352 ppm), Ba(56–157 ppm), V(38–90 ppm),and Sr(15.1–59.6 ppm). Average values of Co and Ni were1.5 and 0.7 ppm, respectively. Trace and rare earth element values were lower than corresponding values for upper continental crust and Post-Archean Australian Shale, with the exception of Zr. The samples showed only slight light rare-earth enrichment and nearly flat heavy rare-earth depletion patterns, with negative Eu and Tm anomalies,typical of felsic sources. Geochemical parameters such as La/Sc, Th/Sc, and Th/Co ratios support that the kaolinitic sediments were derived from a felsic rock source, likely deposited in an oxic environment.^(18 )O values ranged from+ 15.4 to + 21.2% for the investigated samples, consistent with a residual material derived from chemicalweathering of felsic rock and redeposited in a sedimentary basin(typical values of + 19 to + 21.2%). While in the basin, the sediments experienced extended interactions with meteoric water enriched in d D and d16 O. However,the variation in d D and d16 O values for the investigated samples is attributed to the high temperature of formation(54–91 °C). The d D and d^(18 )O values suggest that the sediments, although obtained from different localities within the Lower Benue Trough, formed under similar hot,tropical climatic conditions.展开更多
1 Introduction The stable isotopes of hydrogen and oxygen(δ2H andδ18O)are excellent tracers for studies on the natural water cycle.The isotopic signature of different water bodies
Recent studies suggest that the hydrogen and oxygen isotopic compositions of clay minerals can indicate paleoclimate.Here,we report mineralogy and stable isotopic records(d D and δ^(18)O_(OH))of a weathering profile ...Recent studies suggest that the hydrogen and oxygen isotopic compositions of clay minerals can indicate paleoclimate.Here,we report mineralogy and stable isotopic records(d D and δ^(18)O_(OH))of a weathering profile located in the Fujian Province,aiming to validate whether hydroxyl stable isotopes can indicate paleo-precipitation and paleo-temperature.Our results indicate that the d D and δ^(18)O_(OH)changes in the kaolinite hydroxyl of the weathering profile are basically determined by the isotopic composition of paleo-meteoric water and paleotemperature,respectively.Nevertheless,whether the d D and δ^(18)O_(OH)of kaolinite can quantitatively indicate paleo-precipitation and paleo-temperature needs to be verified further,and especially,the structural oxygen isotopic composition that is the essential element for the kaolinite formation temperature calculation has to be constrained in future work.展开更多
New oxygen and hydrogen isotope ratios of chert from middle, intraformational breccias, and upper breccia members of the Sixtymile Formation(SMF) in eastern Grand Canyon National Park(AZ) yield palaeoclimate estim...New oxygen and hydrogen isotope ratios of chert from middle, intraformational breccias, and upper breccia members of the Sixtymile Formation(SMF) in eastern Grand Canyon National Park(AZ) yield palaeoclimate estimates between 27 and 33℃. The isotopic compositions of cherts define a domain approximately parallel to the meteoric water line when plotted on a δD–δ-(18)O diagram; these data indicate that meteoric water was involved during formation of the chert. In thin section, the absence of interlocking mega quartz(〉35 lm) and silicafilled fractures and veins, along with preserved micromorphological silica fabrics, suggest that the chert has not been permeated by later hydrothermal fluids. Petrographic observations in thin section such as cyclic silica precipitation phases and glaebular micromorphologic fabrics lend support to the interpretation that meteoric waters were involved during chert precipitation. The post 742 Ma SMF has been correlated with diamictite(transition) beds of the Kingston Peak Formation(CA), which in turn have been interpreted to have been deposited during the Sturtian Ice Age(-750–700 Ma). Absence of facetted and striated clasts and other diagnostic glaciogenic features in the SMF,an unconformable contact with the stratigraphically older Chuar Group, coupled with warm palaeotemperature data inferred from stable isotope values of chert, tentatively suggest that deposition of sediment in the SMF likely did not take place during the Sturtian Ice Age.展开更多
The Ciemas gold deposit is located in West Java of Indonesia, which is a Cenozoic magmatism belt resulting from the Indo-Australian plate subducting under the Eurasian plate. Two different volcanic rock belts and asso...The Ciemas gold deposit is located in West Java of Indonesia, which is a Cenozoic magmatism belt resulting from the Indo-Australian plate subducting under the Eurasian plate. Two different volcanic rock belts and associated epithermal deposits are distributed in West Java: the younger late Miocene-Pliocene magmatic belt generated the Pliocene-Pleistocene epithermal deposits, while the older late Eocene-early Miocene magmatic belt generated the Miocene epithermal deposits. To constrain the physico-chemical conditions and the origin of the ore fluid in Ciemas, a detailed study of ore petrography, fluid inclusions, laser Raman spectroscopy, oxygen-hydrogen isotopes for quartz was conducted. The results show that hydrothermal pyrite and quartz are widespread, hydrothermal alteration is well developed, and that leaching structures such as vuggy rocks and extension structures such as comb quartz are common. Fluid inclusions in quartz are mainly liquid-rich two phase inclusions, with fluid compositions in the NaCI-H2O fluid system, and contain no or little CO2. Their homogenization temperatures cluster around 240℃-320℃, the salinities lie in the range of 14-17 wt.% NaCI equiv, and the calculated fluid densities are 0.65-1.00 g/cm^3. The values of δ18OH2O-VSMOW for quartz range from +5.5%0 to +7.7‰, the δDVSMOW of fluid inclusions in quartz ranges from -70‰ to -115‰. All of these data indicate that mixing of magmatic fluid with meteoric water resulted in the formation of the Ciemas deposit. A comparison among gold deposits of West Java suggests that Miocene epithermal ore deposits in the southernmost part of West Java were more affected by magmatic fluids and exhibit a higher degree of sulfidation than those of Pliocene-Pleistocene.展开更多
Studying spatial and temporal characteristics of regional groundwater recharge will guide the scientific management and sustainable development of regional water resources.This study investigated stable isotopes(δ^(1...Studying spatial and temporal characteristics of regional groundwater recharge will guide the scientific management and sustainable development of regional water resources.This study investigated stable isotopes(δ^(18)O and δ^(2) H)of precipitation,groundwater,river water and lake water during 2019-2020 in Qinghai Lake Basin to reveal the spatial and temporal characteristics of groundwater recharge.The local meteoric water line was simulated using ordinary least squares regression(δ^(2) H=7.80δ^(18)O+10.60).The local evaporation lines of the river water,lake water and groundwater were simulated asδ^(2) H=6.21δ^(18)O-0.72,δ^(2) H=5.73δ0-3.60 and δ^(2) H=6.59δ0+1.76,respectively.The δ^(2) H and δ^(18)O of river water and groundwater were in more depleted values due to the recharge by precipitation at high altitudes or precipitation effects,and theδ^(2) H andδ^(18)O of the lake water were in more enriched values because of evaporation.The relationship between the δ^(2) H and δ^(18)O of groundwater and river water was not significantly different,indicating a strong hydrological connection between the groundwater and river water surrounding Qinghai Lake.Additionally,the maximum values of δ^(18)O and the minimum values of lc-excess of groundwater in most regions were both in August,and the minimum values of δ^(18)O and the maximum values of lc-excess of groundwater in most regions were both in October.Therefore,the groundwater was recharged by soil water with strong evaporation in August and recharged by precipitation at high altitudes in October.The recharge rate of groundwater was relatively fast in areas with large slopes and large hydraulic gradients(e.g.,south of Qinghai Lake),and in areas with strong hydrological connections between the groundwater and river water(e.g.,the Buha River Valley).Those results can provide data support for protection and utilization of water resources in Qinghai Lake Basin,and provide reference for groundwater research in closed lake basins on the Qinghai-Tibet Plateau.展开更多
The Huize Zn-Pb- (Ag-Ge) district is a typical representative of the well-known medium-to large-sized carbonate-hosted Zn-Pb- (Ag-Ge) deposits, occurring in the Sichuan-Yunnan-Guizhou Pb-Zn Ore-forming Zone. Generally...The Huize Zn-Pb- (Ag-Ge) district is a typical representative of the well-known medium-to large-sized carbonate-hosted Zn-Pb- (Ag-Ge) deposits, occurring in the Sichuan-Yunnan-Guizhou Pb-Zn Ore-forming Zone. Generally, fluid inclusions within calcite, one of the major gangue minerals, are dominated by two kinds of small (1-10 um) inclusions including pure-liquid and liquid. The inclusions exist in concentrated groups along the crystal planes of the calcite. The ore-forming fluids containing Pb and Zn, which belong to the Na+-K+-Ca2+-Cl--F--SO42- type, are characterized by temperatures of 164-221℃, medium salinity in 5-10.8 wt% NaCl, and medium pressure at 410×105 to 661×105 Pa. The contents of Na+-K+ and C1--F-, and ratios of Na+/K+-Cl-/F- in fluid inclusions present good linearity. The ratios of Na+/K+ (4.66-6.71) and Cl-/F- (18.21-31.04) in the fluid inclusions of calcite are relatively high, while those of Na+/K+ (0.29-5.69) and Cl-/F- (5.00-26.0) in the inclusions of sphalerite and pyrite are relatively low. The ratio of Na+/K+ increases in accord with those of Cl-/F-, which indicates that ore-forming fluid of deep source participates in the mineralization. The waters of fluid inclusions have δD values from -43.5‰ to -55.4‰ of calcite. The δ18OV-SMOW values of the ore-forming fluids, calculated values, range from 17.09‰ to 18.56‰ of calcite and 17.80‰ to 23.14‰ for dolomite. δ13CV-PDB values range from -1.94‰ to -3.31‰ for calcite and -3.35‰ to 0.85‰ for the ore-bearing dolomite. These data better demonstrate that the ore-forming fluids were mainly derived from metamorphic water and magmatic hot fluid, in relation to the metamorphism of the Kunyang Group in the basement and magmatic hydrothermalism. The deposit itself might have resulted from ascending cycles of ore-forming fluid, enriched in Pb and Zn. The Huize Zn-Pb- (Ag-Ge) deposits related to carbonate-hosted Zn-Pb sulphides.展开更多
Stable oxygen and hydrogen isotopic compositions(δ^(18)O and δD) of plant xylem water and its potential water sources can provide new information for studying water sources, competitive interactions and water use pa...Stable oxygen and hydrogen isotopic compositions(δ^(18)O and δD) of plant xylem water and its potential water sources can provide new information for studying water sources, competitive interactions and water use patterns of plants. The contributions of different water sources to three plants, Hedysarum scoparium(HS), Caragana Korshinskii(CK) and Artemisia ordosica(AO), were investigated in the artificial sand-fixed vegetation of Shapotou, the southeastern margin of the Tengger Desert of northwestern China, based on meteorological data and δ^(18)O and δD values of precipitation, groundwater, soil water and xylem water of HS, CK and AO. Our results indicated that soil water infiltration through precipitation was the main water source of the artificial sand-fixed vegetation. Obvious differences in soil water content and in δ^(18)O of soil water and xylem water were found among different seasons. No relationship was found between the δ^(18)O in plant xylem water and in soil water in January. The same water use patterns were found in CK, HS and AO in May, suggesting they have the same water sources. The different water sources of CK, HS and AO in August indicate that water competition occurred. In addition, the main water sources of CK, HS and AO in August mainly come from shallow soil water, while they use relatively deep soil water in May. This phenomenon is related to the differences of soil water content throughout soil profile, precipitation, transpiration and water competition under different growth periods. The water use patterns of CK, HS and AO respond to soil water content throughout the soil profile and their competition balance for water uptake during different growth season. The results indicate that these sandfixed plants have developed into a relatively stable stage and they are able to regulate their water use behavior as a response to the environmental conditions, which reinforces the effectiveness of plantation of native shrubs without irrigation in degraded areas.展开更多
Located in Alxa Zuoqi (Left Banner) of Inner Mongolia, China, the Zhulazhaga gold deposit is the first large- scale gold deposit that was found in the middle-upper Proterozoic strata along the north margin of the Nort...Located in Alxa Zuoqi (Left Banner) of Inner Mongolia, China, the Zhulazhaga gold deposit is the first large- scale gold deposit that was found in the middle-upper Proterozoic strata along the north margin of the North China craton in recent years. It was discovered by the No. 1 Geophysical and Geochemical Exploration Party of Inner Mongolia as a result of prospecting a geochemical anomaly. By now, over 50 tonnes of gold has been defined, with an average Au grade of 4 g/ t. The ore bodies occur in the first lithological unit of the Mesoproterozoic Zhulazhagamaodao Formation (MZF), which is composed mainly of epimetamorphic sandstone and siltstone and partly of volcanic rocks. With high concentration of gold, the first lithological unit of the MZF became the source bed for the late-stage ore formation. Controlled by the interstratal fracture zones, the ore bodies mostly appear along the bedding with occurrence similar to that of the strata. The primitive ore types are predominantly the altered rock type with minor ore belonging to the quartz veins type. There are also some oxidized ore near the surface. The metallic minerals are composed mainly of pyrite, pyrrhotite and arsenopyrite with minor chalcopyrite, galena and limonite. Most gold minerals appear as native gold and electrum. Hydrothermal alterations associated with the ore formation are actinolitization, silicatization, sulfidation and carbonation. A total of 100 two-phase H 2 O-rich and 7 three-phase daughter crystal-bearing inclusions were measured in seven gold- bearing quartz samples from the Zhulazhaga gold deposit. The homogenization temperatures of the two-phase H 2 O-rich inclusions range from 155 to 401°C, with an average temperature of 284°C and bimodal distributions from 240 to 260°C and 300 to 320°C respectively. The salinities of the two-phase H 2 O-rich inclusions vary from 9.22wt% to 24.30wt% NaCl equiv, with a mode between 23 wt% and 24wt% NaCl equiv. Comparatively, the homogenization temperatures of the three- phase daughter crystal-bearing inclusions vary from 210 to 435°C and the salinities from 29.13wt% to 32.62wt% NaCl equiv. It indicates that the ore-forming fluid is meso-hypothermal and characterized by high salinity, which is apparently different from the metamorphic origin with low salinity. It suggests a magmatic origin of the gold-bearing fluid. The δ 18 O values of quartz from auriferous veins range from 11.9 to 16.3 per mil, and the calculated values in equilibrium with quartz vary from 1.06 to 9.60 per mil, which fall between the values of meteoric water and magmatic water. It reflects that the ore-forming fluid may be the product of mixing of meteoric water and magmatic water. Based on geological and geochemical studies of the Zhulazhaga gold deposit, it is supposed that the volcanism in the Mesoproterozoic might make gold pre-concentrate in the strata. The extensive and intensive Hercynian tectono-magmatic activity not only brought along a large number of ore-forming materials, but also made the gold from the strata rework. It can be concluded that the ore bodies were mainly formed in late hydrothermal reworking stage. Compared with typical gold deposits associated with epimetamorphic clastic rocks, the Zhulazhaga deposit has similar features in occurrence of ore bodies, ore-controlling structure, wall-rock alterations and mineral assemblages. Therefore, the Zhulazhaga gold deposit belongs to the epimetamorphic clastic rock type.展开更多
The stable isotope has been extensively applied as an effective tracer especially in precipitation. In glacierized area of arid northwest China, temperature is widely considered to be a major factor affecting isotopes...The stable isotope has been extensively applied as an effective tracer especially in precipitation. In glacierized area of arid northwest China, temperature is widely considered to be a major factor affecting isotopes in precipitation, while the influences of precipitation amount, relative humidity and other meteorological parameters are still not clear. Based on analyses on stable isotope values of water samples and NCEP/NCAR(National Centers of Environmental Prediction/National Center for Atmospheric Research, USA) re-analysis data, the moisture source and characteristics of isotopes in the precipitation, meltwater and river water isotopes at Urumqi Glacier No.1 of the upstream Urumqi River Basin, eastern Tianshan Mountains from spring to autumn during four years(from 2008 to 2011) was studied. Results indicated that meltwater are the main source of water for the upper Urumqi River. Seasonal variation of δ18 O in precipitation demonstrated that δ18 O was more enriched in summer and depleted in spring and autumn. Temperature was positively correlated with isotopes, while precipitation amount and relative humidity was negatively correlated with isotopes. The water vapor was affected by westerly air mass and regional water vapor cycle. Meanwhile, back trajectory clustering analyses showed that the moisture mainly from Europe and central Asia. The moisture was more likely to be locally sourced with the ratio was 46.8%~52.1%.展开更多
Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and wa...Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.展开更多
基金support from several sources,including the Backbone Teacher Training Program(10912-SJGG2021-04233)the Teaching Reform Project of Chengdu University of Technology(JG2130131)+1 种基金the University-Industry Collaborative Education Project,Ministry of Education,China(22097130210756)National Natural Science Foundation of China(42272129).
文摘The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province.
基金supported by the China Geological Survey and International Atomic Energy Agency.
文摘Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of-7.8‰ and -53.0‰ for δ^18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from -10.6‰ to -6.0‰ with an average of-8.4‰ for δ^18O and from -85‰ to -46‰ with an average of-63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from -11.6‰ to -8.8‰ with an average of -10.2‰ for δ^18O and from -89‰ to -63‰ with an average of -76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of ^14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.
基金supported by the National Natural Science Foundation of China(50979065,51109154 and 51249002)the Natural Science Foundation of Shanxi Province,China(2012021026-2)+2 种基金the Program for Science and Technology Development of Shanxi Province,China(20110311018-1)the Specialized Research Fund for the Doctoral Program of Higher Education,China(20111402120006,20121402110009)the Program for Graduate Student Education and Innovation of Shanxi Province,China(2015BY27)
文摘Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to investigate the root water uptake mechanisms of winter wheat (Triticum aesfivum L.) under different irrigation depths in the North China Plain. Both direct inference approach and multisource linear mixing model were applied to estimate the distribution of water uptake with depth in six growing stages. Results showed that winter wheat under land surface irrigation treatment (Ts) mainly absorbed water from 10-20 cm soil layers in the wintering and green stages (66.9 and 72.0%, respectively); 0-20 cm (57.0%) in the jointing stage; 0-40 (15.3%) and 80-180 cm (58.1%) in the heading stage; 60-80 (13.2%) and 180-220 cm (35.5%) in the filling stage; and 0-40 (46.8%) and 80-100 cm (31.0%) in the ripening stage. Winter wheat under whole soil layers irrigation treatment (Tw) absorbed more water from deep soil layer than Ts in heading, filling and ripening stages. Moreover, root cell activity and root length density of winter wheat under TW were significantly greater than that of Ts in the three stages. We concluded that distribution of water uptake with depth was affected by the availability of water sources, the root length density and root cell activity. Implementation of the whole soil layers irrigation method can affect root system distribution and thereby increase water use from deeper soil and enhance water use efficiency.
基金supported by the National Natural Science Foundation of China(Grants No.41672225 and 41222020)the Program of the China Geology Survey(Grant No.12120113103700)the Fundamental Research Funds for the Central Universities(Grant No.2652013028)
文摘Isotopic and chemical compositions of pore water(PW) are highly relevant to environmental and forensic study. Five lake water(LW)samples and five sediment samples were collected to investigate the effects of pore sizes of sediments on PW chemistry and stable isotopes and determine mechanisms controlling their variations. Six pore water fractions were extracted from different-sized pores in each sediment sample at six sequential centrifugal speeds for chemical and isotopic analysis. The sediments consisted mainly of quartz, feldspar, and clay minerals. The hydrogen and oxygen isotopic compositions of PW are mainly controlled by the overlying LW, although the lag effect of exchange between overlying LW and PW results in isotopic differences when recharge of LW is quicker than isotopic exchange in PW. Identical isotopic compositions of PW from sediments with different pore sizes indicate that isotopic exchange of water molecules with different pore sizes is a quick process. The ratio of average total dissolved solid(TDS) concentration of PW to TDS concentration of LW shows a strong relationship with adsorption capacity of sediments, demonstrating that remobilization of ions bound to sediments mainly causes a chemical shift from LW to PW.Concentrations of Ca^(2+), Mg^(2+),and Cl^-in PW remain unchanged,while concentrations of Na^+,K^+,and SO_4^(2-) slightly increase with decreasing pore size. Chemical differences of PW from sediments with different pore sizes are governed by ion adsorption properties and surface characteristics of different-si zed particles.
基金financially supported by the China Geological Survey (No. 1212011220014)。
文摘According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperature and residence time of groundwater in the Weishan area of Wudalianchi, also calculating the contribution of noble gas components from different sources to the samples. Based on the characteristics of hydrogen and oxygen isotopes and noble gases Xe and Ne, the recharge altitude and recharge temperature of the two aquifers were estimated, and the recharge temperature fitting with the NGT model as verified, the results showing that the main recharge altitude of groundwater in the region was 500–600 m, the recharge temperature being 2–7°C. He_(eq) and He_(ea) of the samples have been simulated using the OD model, the content of radioactive ~4He in the crust being obtained, the groundwater ages under the two conditions(closed condition and open condition) both being simulated. The results show that groundwater from the sandstone layer water is older than groundwater from the basalt layer. Hydrochemical characteristics and noble gas isotope ratios indicate that in the basalt aquifer and sandstone aquifer in the Weishan area, in addition to atmospheric and crustal helium, there is also an input of mantle-derived helium. The fault constitutes the uplift channel for groundwater containings mantle components, which results in the mantle source composition in water samples near the fault being much higher than those form non-fault areas.
基金jointly supported by the Geological Survey of China (Grant No. 1212011140050)the National Natural Science Foundation of China (Grant No. 41663006)
文摘The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daugh- ter-beating inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-tem- perature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ^18O values of chalcopyrite- bearing quartz ranged from 4.96‰ to 5.86%0, with an average of 5.40%0. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from - 87‰ to - 107‰, with an average of - 97.86%0. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ^34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.
基金supported by the Natural Science Foundation of China(Grant no.41806229)the Ministry of Natural Resources of the People’s Republic of China(Impact and Response of Antarctic Seas to Climate Change,Grant no.IRASCC 02-04-01).
文摘Antarctica’s marginal seas are of great importance to atmosphere-ocean-ice interactions and are sensitive to global climate change.Multiple factors account for the freshwater budget in these regions,including glacier melting,seasonal formation/decay of sea ice,and precipitation.Hydrogen(H)and oxygen(O)isotopes represent useful proxies for determining the distribution and migration of water masses.We analyzed the H and O isotopic compositions of 190 seawater samples collected from the Amundsen Sea during the 34th Chinese Antarctic Research Expedition in 2017/2018.The upper-oceanic structure(<400 m)and freshwater(meteoric water and sea ice melt)distribution in the Amundsen Sea were identified based on conductivity-temperature-depth data and the H and O isotopic composition.Antarctic Surface Water,characterized as cold and fresh with low H and O isotopic ratios,was found distributed mainly in the upper~150 m between the Antarctic Slope Front and Polar Front,where it had been affected considerably by upwelled Upper Circumpolar Deep Water(UCDW)between 68°S and 71°S.A three-endmember(meteoric water,sea ice melt,and Circumpolar Deep Water)mixing model indicated that waters with relatively high proportions(>3%)of freshwater generally lie in the upper~50 m and extend from Antarctica to~65°S in the meridional direction(anomalously low freshwater proportion occurred between 68°S and 71°S).Winter Water mainly occupied the layer between 50 and 150 m south of 71°S in the western Amundsen Sea.The water structure and spatial distribution of freshwater in the upper Amundsen Sea were found influenced mainly by the rates of basal and surficial melting of ice shelves,seasonal alternation of sea ice melt/formation,wind forcing,and regional bathymetry.Owing to the distance between heavy sea ice boundary(HSIB)and ice shelves is much shorter in the western HSIB than the east HSIB,the western part of the heavy sea ice boundary includes a higher proportion of freshwater than the eastern region.This study,which highlighted the distribution and extent of freshwater derived from ice(ice shelves and sea ice)melt,provides important evidence that the offshore drift pathway of cold and fresh Antarctic continental shelf water is likely interrupted by upwelled UCDW in the Amundsen Sea.
文摘The Ordovician was an important transitional period for global climate and organic evolution,the global was in the flood and glacial,Onganism was extinction(Zhan,2007;Trotter et al.,2008;Axel et al.,2010).Under the influence
基金Support for this study was received from Orient Resources Ltd.in Canada,Wuhan Institute of Technology,China,and College of Earth Sciences,Jilin University,China.
文摘By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)O and δ^(13)C isotope signatures of dolomite samples vary between 10.2 and 13.0‰,and between−7.2 and−5.2‰,respectively,implying that the carbon derives from the upper mantle.δD and δ^(18) O of quartz,biotite,and muscovite from diff erent ore veins of the deposit vary between−82 and−59‰,and between 11.6 and 12.4‰,respectively,implying that the metallogenic solutions are mainly magmatic.According to the relevant research results of many isotope geologists,the fractionation degree of hydrogen isotopes increases as the depth to the Earth’s core increases,and the more diff erentiated the hydrogen isotopes are,the lower their values will be.In other words,mantle-derived solutions can have extremely low hydrogen isotope values.This means that the δD‰ value−134 of the pyrrhotite sample numbered SD-34 in this article may indicate mantle-derived oreforming fl uid of the deposit.The formation of the Dashuigou tellurium deposit occurred between 91.71 and 80.19 Ma.
文摘This study evaluated the Cretaceous(Campanian–Maastrichtian) kaolinitic sediments of the Ajali/Mamu and Enugu/Nkporo Formations from the Lower Benue Trough of Nigeria. A combined method of inductively coupled plasma–mass spectrometry and isotope ratio mass spectrometry was used to investigate trace and rareearth element geochemistry and hydrogen and oxygen isotopic compositions. These data were then used to infer the sediments' provenance and paleoclimatic conditions during their deposition. The sediments contained low concentrations of most trace elements, with the exceptions of Zr(651–1352 ppm), Ba(56–157 ppm), V(38–90 ppm),and Sr(15.1–59.6 ppm). Average values of Co and Ni were1.5 and 0.7 ppm, respectively. Trace and rare earth element values were lower than corresponding values for upper continental crust and Post-Archean Australian Shale, with the exception of Zr. The samples showed only slight light rare-earth enrichment and nearly flat heavy rare-earth depletion patterns, with negative Eu and Tm anomalies,typical of felsic sources. Geochemical parameters such as La/Sc, Th/Sc, and Th/Co ratios support that the kaolinitic sediments were derived from a felsic rock source, likely deposited in an oxic environment.^(18 )O values ranged from+ 15.4 to + 21.2% for the investigated samples, consistent with a residual material derived from chemicalweathering of felsic rock and redeposited in a sedimentary basin(typical values of + 19 to + 21.2%). While in the basin, the sediments experienced extended interactions with meteoric water enriched in d D and d16 O. However,the variation in d D and d16 O values for the investigated samples is attributed to the high temperature of formation(54–91 °C). The d D and d^(18 )O values suggest that the sediments, although obtained from different localities within the Lower Benue Trough, formed under similar hot,tropical climatic conditions.
基金financially supported by the National Basic Research Program of China, No.2010CB428803
文摘1 Introduction The stable isotopes of hydrogen and oxygen(δ2H andδ18O)are excellent tracers for studies on the natural water cycle.The isotopic signature of different water bodies
基金funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.41225020 and41376049)National Programme on Global Change and Air-Sea Interaction(GASI-GEOGE-03)
文摘Recent studies suggest that the hydrogen and oxygen isotopic compositions of clay minerals can indicate paleoclimate.Here,we report mineralogy and stable isotopic records(d D and δ^(18)O_(OH))of a weathering profile located in the Fujian Province,aiming to validate whether hydroxyl stable isotopes can indicate paleo-precipitation and paleo-temperature.Our results indicate that the d D and δ^(18)O_(OH)changes in the kaolinite hydroxyl of the weathering profile are basically determined by the isotopic composition of paleo-meteoric water and paleotemperature,respectively.Nevertheless,whether the d D and δ^(18)O_(OH)of kaolinite can quantitatively indicate paleo-precipitation and paleo-temperature needs to be verified further,and especially,the structural oxygen isotopic composition that is the essential element for the kaolinite formation temperature calculation has to be constrained in future work.
基金provided by a grant from Chuck Baltzer,Environmental Support Servicesgraciously awarded by Grand Canyon National Park officials
文摘New oxygen and hydrogen isotope ratios of chert from middle, intraformational breccias, and upper breccia members of the Sixtymile Formation(SMF) in eastern Grand Canyon National Park(AZ) yield palaeoclimate estimates between 27 and 33℃. The isotopic compositions of cherts define a domain approximately parallel to the meteoric water line when plotted on a δD–δ-(18)O diagram; these data indicate that meteoric water was involved during formation of the chert. In thin section, the absence of interlocking mega quartz(〉35 lm) and silicafilled fractures and veins, along with preserved micromorphological silica fabrics, suggest that the chert has not been permeated by later hydrothermal fluids. Petrographic observations in thin section such as cyclic silica precipitation phases and glaebular micromorphologic fabrics lend support to the interpretation that meteoric waters were involved during chert precipitation. The post 742 Ma SMF has been correlated with diamictite(transition) beds of the Kingston Peak Formation(CA), which in turn have been interpreted to have been deposited during the Sturtian Ice Age(-750–700 Ma). Absence of facetted and striated clasts and other diagnostic glaciogenic features in the SMF,an unconformable contact with the stratigraphically older Chuar Group, coupled with warm palaeotemperature data inferred from stable isotope values of chert, tentatively suggest that deposition of sediment in the SMF likely did not take place during the Sturtian Ice Age.
基金financially supported by the National Natural Science Foundation of China(NFSC No. 41573039)
文摘The Ciemas gold deposit is located in West Java of Indonesia, which is a Cenozoic magmatism belt resulting from the Indo-Australian plate subducting under the Eurasian plate. Two different volcanic rock belts and associated epithermal deposits are distributed in West Java: the younger late Miocene-Pliocene magmatic belt generated the Pliocene-Pleistocene epithermal deposits, while the older late Eocene-early Miocene magmatic belt generated the Miocene epithermal deposits. To constrain the physico-chemical conditions and the origin of the ore fluid in Ciemas, a detailed study of ore petrography, fluid inclusions, laser Raman spectroscopy, oxygen-hydrogen isotopes for quartz was conducted. The results show that hydrothermal pyrite and quartz are widespread, hydrothermal alteration is well developed, and that leaching structures such as vuggy rocks and extension structures such as comb quartz are common. Fluid inclusions in quartz are mainly liquid-rich two phase inclusions, with fluid compositions in the NaCI-H2O fluid system, and contain no or little CO2. Their homogenization temperatures cluster around 240℃-320℃, the salinities lie in the range of 14-17 wt.% NaCI equiv, and the calculated fluid densities are 0.65-1.00 g/cm^3. The values of δ18OH2O-VSMOW for quartz range from +5.5%0 to +7.7‰, the δDVSMOW of fluid inclusions in quartz ranges from -70‰ to -115‰. All of these data indicate that mixing of magmatic fluid with meteoric water resulted in the formation of the Ciemas deposit. A comparison among gold deposits of West Java suggests that Miocene epithermal ore deposits in the southernmost part of West Java were more affected by magmatic fluids and exhibit a higher degree of sulfidation than those of Pliocene-Pleistocene.
基金funded by the National Natural Science Foundation of China(41730854,41877157,42177236)。
文摘Studying spatial and temporal characteristics of regional groundwater recharge will guide the scientific management and sustainable development of regional water resources.This study investigated stable isotopes(δ^(18)O and δ^(2) H)of precipitation,groundwater,river water and lake water during 2019-2020 in Qinghai Lake Basin to reveal the spatial and temporal characteristics of groundwater recharge.The local meteoric water line was simulated using ordinary least squares regression(δ^(2) H=7.80δ^(18)O+10.60).The local evaporation lines of the river water,lake water and groundwater were simulated asδ^(2) H=6.21δ^(18)O-0.72,δ^(2) H=5.73δ0-3.60 and δ^(2) H=6.59δ0+1.76,respectively.The δ^(2) H and δ^(18)O of river water and groundwater were in more depleted values due to the recharge by precipitation at high altitudes or precipitation effects,and theδ^(2) H andδ^(18)O of the lake water were in more enriched values because of evaporation.The relationship between the δ^(2) H and δ^(18)O of groundwater and river water was not significantly different,indicating a strong hydrological connection between the groundwater and river water surrounding Qinghai Lake.Additionally,the maximum values of δ^(18)O and the minimum values of lc-excess of groundwater in most regions were both in August,and the minimum values of δ^(18)O and the maximum values of lc-excess of groundwater in most regions were both in October.Therefore,the groundwater was recharged by soil water with strong evaporation in August and recharged by precipitation at high altitudes in October.The recharge rate of groundwater was relatively fast in areas with large slopes and large hydraulic gradients(e.g.,south of Qinghai Lake),and in areas with strong hydrological connections between the groundwater and river water(e.g.,the Buha River Valley).Those results can provide data support for protection and utilization of water resources in Qinghai Lake Basin,and provide reference for groundwater research in closed lake basins on the Qinghai-Tibet Plateau.
基金the Funds for Fostering Young Pioneers of Yunnan Province(Natural Science Foundation of Yunnan Province)(99D0003G)the National State Climbing Plan(95-Yu-39)+2 种基金the Collaboration Program sponsored by the colleges and universities of Yunnan Province(2000YK-04)the National Natural Science Foundation of China(No.40172038) the Rescarch Project of the Huize Pb-Zn Mine(2000-02).
文摘The Huize Zn-Pb- (Ag-Ge) district is a typical representative of the well-known medium-to large-sized carbonate-hosted Zn-Pb- (Ag-Ge) deposits, occurring in the Sichuan-Yunnan-Guizhou Pb-Zn Ore-forming Zone. Generally, fluid inclusions within calcite, one of the major gangue minerals, are dominated by two kinds of small (1-10 um) inclusions including pure-liquid and liquid. The inclusions exist in concentrated groups along the crystal planes of the calcite. The ore-forming fluids containing Pb and Zn, which belong to the Na+-K+-Ca2+-Cl--F--SO42- type, are characterized by temperatures of 164-221℃, medium salinity in 5-10.8 wt% NaCl, and medium pressure at 410×105 to 661×105 Pa. The contents of Na+-K+ and C1--F-, and ratios of Na+/K+-Cl-/F- in fluid inclusions present good linearity. The ratios of Na+/K+ (4.66-6.71) and Cl-/F- (18.21-31.04) in the fluid inclusions of calcite are relatively high, while those of Na+/K+ (0.29-5.69) and Cl-/F- (5.00-26.0) in the inclusions of sphalerite and pyrite are relatively low. The ratio of Na+/K+ increases in accord with those of Cl-/F-, which indicates that ore-forming fluid of deep source participates in the mineralization. The waters of fluid inclusions have δD values from -43.5‰ to -55.4‰ of calcite. The δ18OV-SMOW values of the ore-forming fluids, calculated values, range from 17.09‰ to 18.56‰ of calcite and 17.80‰ to 23.14‰ for dolomite. δ13CV-PDB values range from -1.94‰ to -3.31‰ for calcite and -3.35‰ to 0.85‰ for the ore-bearing dolomite. These data better demonstrate that the ore-forming fluids were mainly derived from metamorphic water and magmatic hot fluid, in relation to the metamorphism of the Kunyang Group in the basement and magmatic hydrothermalism. The deposit itself might have resulted from ascending cycles of ore-forming fluid, enriched in Pb and Zn. The Huize Zn-Pb- (Ag-Ge) deposits related to carbonate-hosted Zn-Pb sulphides.
基金supported by the National Science Foundation China (Grants No. 41771028 and 41571025)the Key Laboratory of Agricultural Water Resources, the Chinese Academy of Sciences (Grants No. KFKT201606)the Shaanxi province natural science foundation research project (Grants No. 2016JM4006)
文摘Stable oxygen and hydrogen isotopic compositions(δ^(18)O and δD) of plant xylem water and its potential water sources can provide new information for studying water sources, competitive interactions and water use patterns of plants. The contributions of different water sources to three plants, Hedysarum scoparium(HS), Caragana Korshinskii(CK) and Artemisia ordosica(AO), were investigated in the artificial sand-fixed vegetation of Shapotou, the southeastern margin of the Tengger Desert of northwestern China, based on meteorological data and δ^(18)O and δD values of precipitation, groundwater, soil water and xylem water of HS, CK and AO. Our results indicated that soil water infiltration through precipitation was the main water source of the artificial sand-fixed vegetation. Obvious differences in soil water content and in δ^(18)O of soil water and xylem water were found among different seasons. No relationship was found between the δ^(18)O in plant xylem water and in soil water in January. The same water use patterns were found in CK, HS and AO in May, suggesting they have the same water sources. The different water sources of CK, HS and AO in August indicate that water competition occurred. In addition, the main water sources of CK, HS and AO in August mainly come from shallow soil water, while they use relatively deep soil water in May. This phenomenon is related to the differences of soil water content throughout soil profile, precipitation, transpiration and water competition under different growth periods. The water use patterns of CK, HS and AO respond to soil water content throughout the soil profile and their competition balance for water uptake during different growth season. The results indicate that these sandfixed plants have developed into a relatively stable stage and they are able to regulate their water use behavior as a response to the environmental conditions, which reinforces the effectiveness of plantation of native shrubs without irrigation in degraded areas.
文摘Located in Alxa Zuoqi (Left Banner) of Inner Mongolia, China, the Zhulazhaga gold deposit is the first large- scale gold deposit that was found in the middle-upper Proterozoic strata along the north margin of the North China craton in recent years. It was discovered by the No. 1 Geophysical and Geochemical Exploration Party of Inner Mongolia as a result of prospecting a geochemical anomaly. By now, over 50 tonnes of gold has been defined, with an average Au grade of 4 g/ t. The ore bodies occur in the first lithological unit of the Mesoproterozoic Zhulazhagamaodao Formation (MZF), which is composed mainly of epimetamorphic sandstone and siltstone and partly of volcanic rocks. With high concentration of gold, the first lithological unit of the MZF became the source bed for the late-stage ore formation. Controlled by the interstratal fracture zones, the ore bodies mostly appear along the bedding with occurrence similar to that of the strata. The primitive ore types are predominantly the altered rock type with minor ore belonging to the quartz veins type. There are also some oxidized ore near the surface. The metallic minerals are composed mainly of pyrite, pyrrhotite and arsenopyrite with minor chalcopyrite, galena and limonite. Most gold minerals appear as native gold and electrum. Hydrothermal alterations associated with the ore formation are actinolitization, silicatization, sulfidation and carbonation. A total of 100 two-phase H 2 O-rich and 7 three-phase daughter crystal-bearing inclusions were measured in seven gold- bearing quartz samples from the Zhulazhaga gold deposit. The homogenization temperatures of the two-phase H 2 O-rich inclusions range from 155 to 401°C, with an average temperature of 284°C and bimodal distributions from 240 to 260°C and 300 to 320°C respectively. The salinities of the two-phase H 2 O-rich inclusions vary from 9.22wt% to 24.30wt% NaCl equiv, with a mode between 23 wt% and 24wt% NaCl equiv. Comparatively, the homogenization temperatures of the three- phase daughter crystal-bearing inclusions vary from 210 to 435°C and the salinities from 29.13wt% to 32.62wt% NaCl equiv. It indicates that the ore-forming fluid is meso-hypothermal and characterized by high salinity, which is apparently different from the metamorphic origin with low salinity. It suggests a magmatic origin of the gold-bearing fluid. The δ 18 O values of quartz from auriferous veins range from 11.9 to 16.3 per mil, and the calculated values in equilibrium with quartz vary from 1.06 to 9.60 per mil, which fall between the values of meteoric water and magmatic water. It reflects that the ore-forming fluid may be the product of mixing of meteoric water and magmatic water. Based on geological and geochemical studies of the Zhulazhaga gold deposit, it is supposed that the volcanism in the Mesoproterozoic might make gold pre-concentrate in the strata. The extensive and intensive Hercynian tectono-magmatic activity not only brought along a large number of ore-forming materials, but also made the gold from the strata rework. It can be concluded that the ore bodies were mainly formed in late hydrothermal reworking stage. Compared with typical gold deposits associated with epimetamorphic clastic rocks, the Zhulazhaga deposit has similar features in occurrence of ore bodies, ore-controlling structure, wall-rock alterations and mineral assemblages. Therefore, the Zhulazhaga gold deposit belongs to the epimetamorphic clastic rock type.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20020102 XDA20060201)+2 种基金National Natural Science Foundation of China (International (regional) cooperation and exchange projects) (41761134093)National Natural Science Foundation of China (41471058 41771077)
文摘The stable isotope has been extensively applied as an effective tracer especially in precipitation. In glacierized area of arid northwest China, temperature is widely considered to be a major factor affecting isotopes in precipitation, while the influences of precipitation amount, relative humidity and other meteorological parameters are still not clear. Based on analyses on stable isotope values of water samples and NCEP/NCAR(National Centers of Environmental Prediction/National Center for Atmospheric Research, USA) re-analysis data, the moisture source and characteristics of isotopes in the precipitation, meltwater and river water isotopes at Urumqi Glacier No.1 of the upstream Urumqi River Basin, eastern Tianshan Mountains from spring to autumn during four years(from 2008 to 2011) was studied. Results indicated that meltwater are the main source of water for the upper Urumqi River. Seasonal variation of δ18 O in precipitation demonstrated that δ18 O was more enriched in summer and depleted in spring and autumn. Temperature was positively correlated with isotopes, while precipitation amount and relative humidity was negatively correlated with isotopes. The water vapor was affected by westerly air mass and regional water vapor cycle. Meanwhile, back trajectory clustering analyses showed that the moisture mainly from Europe and central Asia. The moisture was more likely to be locally sourced with the ratio was 46.8%~52.1%.
基金supported by the National Natural Science Foundation of China(Grant Nos.41761047,41861040 and 41861034).
文摘Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.