Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble meta...Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd M/Y catalysts were evaluated under the following conditions: H 2 pressure 4.2 MPa, MHSV 4.0 h -1 , sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.展开更多
A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109...A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109(8), b = 16.596(8), c = 7.983(3)A, β = 91.590(15)°, V = 3193(2)A^3, Z = 4, C33H18I2N6O3Pb, Mr = 1007.53, Dc = 2.096 g/cm^3, F(000) = 1880, μ(MoKα) = 7.262 mm^-1, the final R = 0.0352 and wR = 0.0951 for 3198 observed reflections with I 〉 2σ(I). In the [(dafone)PbI2]n chain, the Pb center adopts a distorted octahedral coordination geometry and shares an edge to give a one-dimensional polymer. The 3-D arrangement of 1 constructs from H-bonds among dafone molecules and π-π stacking interactions among dissociative dafone molecules. These weak interactions contribute to the stability of the title compound. DFT calculation was carried out to reveal its electronic structure.展开更多
The development of novel simple, and convenient techniques for the fabrication of porous carbon materials with desirable properties, such as tunable pore structures and the presence of nitrogen functionalities, from r...The development of novel simple, and convenient techniques for the fabrication of porous carbon materials with desirable properties, such as tunable pore structures and the presence of nitrogen functionalities, from renewable and abundant biomasses is required. We herein describe an in situ directing method for the preparation of a nitrogen-doped flower-like porous carbon (NFPC) employing arbitrarily shaped MgO from bio-derived glucosamine chloride (GAH). Experimental evidence demonstrated that the structure directing effect of the Mg(OH)2 nanosheets formed in situ from MgO hydrolysis was key to this process, with the original MgO morphology being irrelevant. Furthermore, this method was applicable for a wide variety of biomass-derived carbon precursors. The resulting NFPC exhibited a high nitrogen content of 〈9 wt.%, and was employed as a support to anchor small Ru nanoparticles (average size = 2.7 nm). The resulting Ru/NFPC was highly active in heterogeneous hydrogenations of toluene and benzoic acid, which demonstrated the advantages of nitrogen doping in terms of boosting catalytic performance.展开更多
Electrochemical hydrogenation(ECH)of biomass-derived platform molecules is a burgeoning route for the sustainable utilization of hydrogen.However,the noble-metal-catalyzed ECH of phenolic compounds suffers from intens...Electrochemical hydrogenation(ECH)of biomass-derived platform molecules is a burgeoning route for the sustainable utilization of hydrogen.However,the noble-metal-catalyzed ECH of phenolic compounds suffers from intense competition with hydrogen evolution reaction.We prepared Pt Rh bimetallic nanoparticles dispersed on highly ordered mesoporous carbon nanospheres,which improves the utilization efficiency of adsorbed hydrogen(H_(ad))to ECH in H-UPD region(>0 V vs.RHE).Further analysis reveals(i)the strong overlapping between the d-orbitals of Pt and Rh enhances specific adsorption of phenol;(ii)incorporation of Rh devotes an electronic effect on weakening the alloy-H_(ad)interaction to increase the FE of ECH.DFT calculations confirm the selectivity difference and the ECH parallel pathways:cyclohexanol and cyclohexanone are formed via hydrogenation/dehydrogenation of the intermediate ^(*)C_(6)H_(10) OH.These findings deepen our fundamental understanding of the ECH process,and cast new light on exploration of highly efficient electrocatalysts for biomass upgrading.展开更多
This work proposes a modified activated carbon support,with defects and heteroatoms(N,P-ACs)by nitrogen and phosphorus doping to load non-noble nickel to catalyze aromatic compound hydrogenation.The Ni/N,P-ACs-900(pre...This work proposes a modified activated carbon support,with defects and heteroatoms(N,P-ACs)by nitrogen and phosphorus doping to load non-noble nickel to catalyze aromatic compound hydrogenation.The Ni/N,P-ACs-900(prepared at 900℃)showed promising catalytic activity in liquid-phase 1,5-dinitronaphthalene hydrogenation with a 1,5-diaminonaphthalene yield of 95.8% under the mild condition of 100℃,which is comparable to the commercial Pd/C catalyst.The nitrogen species were burned off at 900℃,causing more defects for nickel metal loading,facilitating the interaction between the supports and the nickel metal,and resulting in highly dispersed metal particles.The computational study of the nickel binding energy has been conducted using density functional theory.It exhibits that the defects formed by heteroatom doping are beneficial to nickel anchoring and deposition to form highly uniform nickel particles.The phosphorus species in combination with the defects are suitable for H_(2) adsorption and dissociation.These results reveal that the heteroatomic doping on the active carbon shows significant effects in the hydrogenation of the liquid-phase aromatic compounds.These findings could provide a promising route for the rational design of aromatic compound hydrogenation catalysts to significantly decrease the cost by instead using noble metal catalysts in the industry.展开更多
A chiral catalyst, Cp*RhTsDPEN (Cp* = pentamethyl cyclopentadiene, TsDPEN = substitutive phenylsulfonyl-l,2-diphenylethylenediamine), was synthesized and immobilized at the surface of glass. The immobilized cataly...A chiral catalyst, Cp*RhTsDPEN (Cp* = pentamethyl cyclopentadiene, TsDPEN = substitutive phenylsulfonyl-l,2-diphenylethylenediamine), was synthesized and immobilized at the surface of glass. The immobilized catalyst exhibited good catalytic efficiency for asymmetric transfer hydrogenation of aromatic ketones in water with HCOONa as hydrogen source.展开更多
Hydrogen is considered a secondary source of energy,commonly referred to as an energy carrier.It has the highest energy content when compared to other common fuels by weight,having great potential for further developm...Hydrogen is considered a secondary source of energy,commonly referred to as an energy carrier.It has the highest energy content when compared to other common fuels by weight,having great potential for further development.Hydrogen can be produced from various domestic resources but,based on the fossil resource conditions in China,coal-based hydrogen energy is considered to be the most valuable,because it is not only an effective way to develop clean energy,but also a proactive exploration of the clean usage of traditional coal resources.In this article,the sorption-enhanced water-gas shift technology in the coal-to-hydrogen section and the hydrogen-storage and transport technology with liquid aromatics are introduced and basic mechanisms,technical advantages,latest progress and future R&D focuses of hydrogen-production and storage processes are listed and discussed.As a conclusion,after considering the development frame and the business characteristics of CHN Energy Group,a conceptual architecture for developing coal-based hydrogen energy and the corresponding supply chain,is proposed.展开更多
A series of novel chiral C_2-symmetric multidentate aminophosphine ligands have been successfully synthesized by Schiff-base condensation of bis(o-formylphenyl)phenylphosphane and easily available monoprotected(1R...A series of novel chiral C_2-symmetric multidentate aminophosphine ligands have been successfully synthesized by Schiff-base condensation of bis(o-formylphenyl)phenylphosphane and easily available monoprotected(1R,2R)-diaminocyclohexane.The catalytic properties of these ligands were investigated in Ir-catalyzed asymmetric transfer hydrogenation of various aromatic ketones,giving the corresponding optical active alcohols with up to 98%conversion and good ee under mild reaction conditions.展开更多
文摘Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd M/Y catalysts were evaluated under the following conditions: H 2 pressure 4.2 MPa, MHSV 4.0 h -1 , sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.
基金Supported by the Natural Science Foundation of Fujian Province (E0710008)Innovation Fund for Young Scientist of Fujian Province (2007F3049)Fund of Education Committee of Fujian Province (JA07018)
文摘A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109(8), b = 16.596(8), c = 7.983(3)A, β = 91.590(15)°, V = 3193(2)A^3, Z = 4, C33H18I2N6O3Pb, Mr = 1007.53, Dc = 2.096 g/cm^3, F(000) = 1880, μ(MoKα) = 7.262 mm^-1, the final R = 0.0352 and wR = 0.0951 for 3198 observed reflections with I 〉 2σ(I). In the [(dafone)PbI2]n chain, the Pb center adopts a distorted octahedral coordination geometry and shares an edge to give a one-dimensional polymer. The 3-D arrangement of 1 constructs from H-bonds among dafone molecules and π-π stacking interactions among dissociative dafone molecules. These weak interactions contribute to the stability of the title compound. DFT calculation was carried out to reveal its electronic structure.
基金Financial support from the National Natural Science Foundation of China (Nos. 91534114 and 21376208), the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars of China (No. LR13B030001), the Fundamental Research Funds for the Central Universities, the Program for Zhejiang Leading Team of S&T Innovation, the Partner Group Program of the Zhejiang University, and the Max- Planck Society is greatly appreciated.
文摘The development of novel simple, and convenient techniques for the fabrication of porous carbon materials with desirable properties, such as tunable pore structures and the presence of nitrogen functionalities, from renewable and abundant biomasses is required. We herein describe an in situ directing method for the preparation of a nitrogen-doped flower-like porous carbon (NFPC) employing arbitrarily shaped MgO from bio-derived glucosamine chloride (GAH). Experimental evidence demonstrated that the structure directing effect of the Mg(OH)2 nanosheets formed in situ from MgO hydrolysis was key to this process, with the original MgO morphology being irrelevant. Furthermore, this method was applicable for a wide variety of biomass-derived carbon precursors. The resulting NFPC exhibited a high nitrogen content of 〈9 wt.%, and was employed as a support to anchor small Ru nanoparticles (average size = 2.7 nm). The resulting Ru/NFPC was highly active in heterogeneous hydrogenations of toluene and benzoic acid, which demonstrated the advantages of nitrogen doping in terms of boosting catalytic performance.
基金supported by the National Key R&D Program of China(2020YFA0710000)the National Natural Science Foundation of China(21902047,21825201,U19A2017,21972164)the Natural Science Foundation of Hunan Province(2020JJ5045)XAS measurements were performed on the XAS beamlines of Australian Synchrotron,Victoria,Australia,part of ANSTO(under project 21805080,22075075,2020JJ5044)。
文摘Electrochemical hydrogenation(ECH)of biomass-derived platform molecules is a burgeoning route for the sustainable utilization of hydrogen.However,the noble-metal-catalyzed ECH of phenolic compounds suffers from intense competition with hydrogen evolution reaction.We prepared Pt Rh bimetallic nanoparticles dispersed on highly ordered mesoporous carbon nanospheres,which improves the utilization efficiency of adsorbed hydrogen(H_(ad))to ECH in H-UPD region(>0 V vs.RHE).Further analysis reveals(i)the strong overlapping between the d-orbitals of Pt and Rh enhances specific adsorption of phenol;(ii)incorporation of Rh devotes an electronic effect on weakening the alloy-H_(ad)interaction to increase the FE of ECH.DFT calculations confirm the selectivity difference and the ECH parallel pathways:cyclohexanol and cyclohexanone are formed via hydrogenation/dehydrogenation of the intermediate ^(*)C_(6)H_(10) OH.These findings deepen our fundamental understanding of the ECH process,and cast new light on exploration of highly efficient electrocatalysts for biomass upgrading.
基金This work was supported by the National Natural Science Foundation of China(Grant No.21908185)Project of Hunan Provincial Natural Science Foundation of China(Grant No.2018JJ3497)+1 种基金Project of Hunan Provincial Education Department(Grant Nos.19B572 and 20B547)Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization,and National Department of Education Engineering Research Centre for Chemical Process Simulation and Optimization.
文摘This work proposes a modified activated carbon support,with defects and heteroatoms(N,P-ACs)by nitrogen and phosphorus doping to load non-noble nickel to catalyze aromatic compound hydrogenation.The Ni/N,P-ACs-900(prepared at 900℃)showed promising catalytic activity in liquid-phase 1,5-dinitronaphthalene hydrogenation with a 1,5-diaminonaphthalene yield of 95.8% under the mild condition of 100℃,which is comparable to the commercial Pd/C catalyst.The nitrogen species were burned off at 900℃,causing more defects for nickel metal loading,facilitating the interaction between the supports and the nickel metal,and resulting in highly dispersed metal particles.The computational study of the nickel binding energy has been conducted using density functional theory.It exhibits that the defects formed by heteroatom doping are beneficial to nickel anchoring and deposition to form highly uniform nickel particles.The phosphorus species in combination with the defects are suitable for H_(2) adsorption and dissociation.These results reveal that the heteroatomic doping on the active carbon shows significant effects in the hydrogenation of the liquid-phase aromatic compounds.These findings could provide a promising route for the rational design of aromatic compound hydrogenation catalysts to significantly decrease the cost by instead using noble metal catalysts in the industry.
基金the Shanghai Sciences and Technologies Development Fund(Nos.13ZR1458700 and 12nm0500500)the Shanghai Municipal Education Commission(Nos.14YZ074,12ZZ135)Shanghai Normal University(Nos.DXL122,SK201329)for financial support
文摘A chiral catalyst, Cp*RhTsDPEN (Cp* = pentamethyl cyclopentadiene, TsDPEN = substitutive phenylsulfonyl-l,2-diphenylethylenediamine), was synthesized and immobilized at the surface of glass. The immobilized catalyst exhibited good catalytic efficiency for asymmetric transfer hydrogenation of aromatic ketones in water with HCOONa as hydrogen source.
文摘Hydrogen is considered a secondary source of energy,commonly referred to as an energy carrier.It has the highest energy content when compared to other common fuels by weight,having great potential for further development.Hydrogen can be produced from various domestic resources but,based on the fossil resource conditions in China,coal-based hydrogen energy is considered to be the most valuable,because it is not only an effective way to develop clean energy,but also a proactive exploration of the clean usage of traditional coal resources.In this article,the sorption-enhanced water-gas shift technology in the coal-to-hydrogen section and the hydrogen-storage and transport technology with liquid aromatics are introduced and basic mechanisms,technical advantages,latest progress and future R&D focuses of hydrogen-production and storage processes are listed and discussed.As a conclusion,after considering the development frame and the business characteristics of CHN Energy Group,a conceptual architecture for developing coal-based hydrogen energy and the corresponding supply chain,is proposed.
基金the National Natural Science Foundation of China(No.21173176)Program for Changjiang Scholars and Innovative Research Team in University(No.IRTl 036)State Key Laboratory of Physical Chemistry of Solid Surfaces for financial support
文摘A series of novel chiral C_2-symmetric multidentate aminophosphine ligands have been successfully synthesized by Schiff-base condensation of bis(o-formylphenyl)phenylphosphane and easily available monoprotected(1R,2R)-diaminocyclohexane.The catalytic properties of these ligands were investigated in Ir-catalyzed asymmetric transfer hydrogenation of various aromatic ketones,giving the corresponding optical active alcohols with up to 98%conversion and good ee under mild reaction conditions.