The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH...The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.展开更多
High-performance and cost-effective catalysts for water splitting are key components of hydrogen-based energy technologies. Metal-organic framework(MOF)-derived metal phosphide composites have immense potential as hig...High-performance and cost-effective catalysts for water splitting are key components of hydrogen-based energy technologies. Metal-organic framework(MOF)-derived metal phosphide composites have immense potential as highly active and stable electrocatalysts but suffer from the poor efficacy of available electrode assembly methods. In this study, an MOF-derived nitrogen-doped porous carbon/Co/Co P/carbon paper(NC/Co/Co P/CP) composite electrode was assembled by electrophoretic deposition and post-processing reactions. The binder-free electrode showed good catalytic activity, significantly higher than that of traditional electrodes. The electrode required overpotentials of 208 and 350 m V to achieve a current density of 10 m A/cm^2 for the hydrogen and oxygen evolution reactions, respectively. This facile synthetic method provides a promising route for designing metal-doped and multi-metal phase MOF-derived composite electrodes for energy storage and conversion devices.展开更多
Topological nodal line(DNL) semimetals, a closed loop of the inverted bands in its bulk phases, result in the almost flat drumhead-like non-trivial surface states(DNSSs) with an unusually high electronic density n...Topological nodal line(DNL) semimetals, a closed loop of the inverted bands in its bulk phases, result in the almost flat drumhead-like non-trivial surface states(DNSSs) with an unusually high electronic density near the Fermi level. High catalytic active sites generally associated with high electronic densities around the Fermi level, high carrier mobility and a close-to-zero free energy of the adsorbed state of hydrogen(?G_(H*)≈0) are prerequisite to design alternative of precious platinum for catalyzing electrochemical hydrogen production from water. By combining these two aspects, it is natural to consider if the DNLs are a good candidate for the hydrogen evolution reaction(HER) or not because its DNSSs provide a robust platform to activate chemical reactions. Here, through first-principles calculations we reported a new DNL TiSi-type family, exhibiting a closed Dirac nodal line due to the linear band crossings in k_y=0 plane.The hydrogen adsorbed state on the surface yields ?G_(H*) to be almost zero and the topological charge carries participate in HER. The results highlight a new routine to design topological quantum catalyst utilizing the topological DNL-induced surface bands as active sites, rather than edge sites-, vacancy-,dopant-, strain-, or heterostructure-created active sites.展开更多
基金financial support for this work from the Strategic Priority Research Program of CAS(XDB36030000)the National Natural Science Foundation of China(21422303,21573049,21872043,22002028)+3 种基金the National Basic Research Plan of China(2016YFA0201600)the Beijing Natural Science Foundation(2142036)the Youth Innovation Promotion Associationthe Special Program of “One Belt One Road”of CAS。
文摘The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.
基金supported by the National Natural Science Foundation of China(21573033)Shandong Provincial Natural Science Foundation,China(ZR2018BB037)+1 种基金Project of Shandong Province Higher Educational Science and Technology Program(J17KA104)Project of Qingdao Applied Basic Research Programs of Science and Technology(18-2-2-10-jch and 18-2-2-35-jch)~~
文摘High-performance and cost-effective catalysts for water splitting are key components of hydrogen-based energy technologies. Metal-organic framework(MOF)-derived metal phosphide composites have immense potential as highly active and stable electrocatalysts but suffer from the poor efficacy of available electrode assembly methods. In this study, an MOF-derived nitrogen-doped porous carbon/Co/Co P/carbon paper(NC/Co/Co P/CP) composite electrode was assembled by electrophoretic deposition and post-processing reactions. The binder-free electrode showed good catalytic activity, significantly higher than that of traditional electrodes. The electrode required overpotentials of 208 and 350 m V to achieve a current density of 10 m A/cm^2 for the hydrogen and oxygen evolution reactions, respectively. This facile synthetic method provides a promising route for designing metal-doped and multi-metal phase MOF-derived composite electrodes for energy storage and conversion devices.
基金supported by the National Science Fund for Distinguished Young Scholars (51725103)the National Natural Science Foundation of China (51671193 and 51474202)+1 种基金the Science Challenging Project (TZ2016004)All calculations have been performed on the high-performance computational cluster in Shenyang National University Science and Technology Park and the National Supercomputing Center in Guangzhou (TH-2 system) with special program for applied research of the NSFC-Guangdong Joint Fund (the second phase) (U1501501)
文摘Topological nodal line(DNL) semimetals, a closed loop of the inverted bands in its bulk phases, result in the almost flat drumhead-like non-trivial surface states(DNSSs) with an unusually high electronic density near the Fermi level. High catalytic active sites generally associated with high electronic densities around the Fermi level, high carrier mobility and a close-to-zero free energy of the adsorbed state of hydrogen(?G_(H*)≈0) are prerequisite to design alternative of precious platinum for catalyzing electrochemical hydrogen production from water. By combining these two aspects, it is natural to consider if the DNLs are a good candidate for the hydrogen evolution reaction(HER) or not because its DNSSs provide a robust platform to activate chemical reactions. Here, through first-principles calculations we reported a new DNL TiSi-type family, exhibiting a closed Dirac nodal line due to the linear band crossings in k_y=0 plane.The hydrogen adsorbed state on the surface yields ?G_(H*) to be almost zero and the topological charge carries participate in HER. The results highlight a new routine to design topological quantum catalyst utilizing the topological DNL-induced surface bands as active sites, rather than edge sites-, vacancy-,dopant-, strain-, or heterostructure-created active sites.