The metal vapor synthesis (MVS) methed was used to prepare activatedcarbon supported nickel electrode. The electrocatalytic activity of the electrode forhydrogen evolution reaction(HGR) in alkaline solution was studie...The metal vapor synthesis (MVS) methed was used to prepare activatedcarbon supported nickel electrode. The electrocatalytic activity of the electrode forhydrogen evolution reaction(HGR) in alkaline solution was studied. Cathodicpolarization curves showed the electrocatalytic activity of Ni/C electrode prepared byMVS method was higher than that of the one prepared by conventional method.展开更多
The exploration of stable and highly efficient alkaline hydrogen evolution reaction(HER)electrocatalysts is imperative for alkaline water splitting.Herein,Se-doped NiCoP with hierarchical nanoarray structures directly...The exploration of stable and highly efficient alkaline hydrogen evolution reaction(HER)electrocatalysts is imperative for alkaline water splitting.Herein,Se-doped NiCoP with hierarchical nanoarray structures directly grown on carbon cloth(Se-NiCoP/CC)was prepared by hydrothermal reaction and phosphorization/selenization process.The experimental results reveal that Se doping could increase the electrochemical active sites and alter the electronic structure of NiCoP.The optimized Se-NiCoP/CC electrode exhibits outstanding HER activity in alkaline electrolyte,which only needs a low overpotential of 79 mV at the current density of 10 mA/cm^(2).When serving as anode and cathode electrode simultaneously,the Se-NiCoP/CC electrodes achieve current density of 50 mA/cm^(2) at a low voltage of only 1.62 V.This work provides a feasible way to rationally design high active HER electrocatalysts.展开更多
Crystalline engineering and heterostructure have attracted much attention as effective strategies to improve the electrocatalytic activity for hydrogen evolution reaction(HER).In this study,a new heterostructure catal...Crystalline engineering and heterostructure have attracted much attention as effective strategies to improve the electrocatalytic activity for hydrogen evolution reaction(HER).In this study,a new heterostructure catalyst(Ru/RuS_(2)@N-rGO)with low crystallinity was fabricated by a simple and low-temperature method for HER in alkaline solution,applying the Na_(2)SO_(4)as S source and polypyrrole as N source.Optimizing through the controllable crystalline engineering and composition ratio of Ru and RuS_(2),the Ru/RuS_(2)@N-rGO heterocatalyst at the calcining 500°C revealed highly efficient HER activity with overpotential 18 mV at a current density 10 mA/cm^(2)and remarkable stability for 24 h in 1.0 mol/L KOH.This work provides a facile and effective method in designing advanced electrocatalysts for HER in the alkaline electrolytes by synergistically structural and component modulations.展开更多
The performance of Al-alloy anode in 4 mol/L KOH with and without stannate and o-aminophenol at 25℃ and 55℃ was studied by hydrogen collection, potentiodynamic polarization and electrochemical impedance spectrum, o-...The performance of Al-alloy anode in 4 mol/L KOH with and without stannate and o-aminophenol at 25℃ and 55℃ was studied by hydrogen collection, potentiodynamic polarization and electrochemical impedance spectrum, o-aminophenol acts as a perfect inhibitor because of its adsorbability and forming chelate complex at its optimum concentration of 0.4 mol/L. Stannate enhances the inhibition of o-aminophenol and improves the activity of Al-alloy because of its reduction to tin. There is synergetic effect of stannate with o-aminophenol on the behavior of Al-alloy, and the inhibitive efficiency at 55℃ is better than that at 25 ℃.展开更多
Passivation kinetics of two Mg-RE alloys,such as Mg-Nd-Gd-Zn-Zr(EV31A),and Mg-Y-Nd-Gd-Zr(WE43C)were investigated in two different heat treated conditions(solution treated and overaged)in 0.01-1.0 M NaOH solutions unde...Passivation kinetics of two Mg-RE alloys,such as Mg-Nd-Gd-Zn-Zr(EV31A),and Mg-Y-Nd-Gd-Zr(WE43C)were investigated in two different heat treated conditions(solution treated and overaged)in 0.01-1.0 M NaOH solutions under potentiostatic conditions.Negative reaction order was observed in dilute NaOH which transitioned to positive values as the passivation time increased and in the 1 M NaOH as well.The passive layers showed platelet morphology and the size of the platelets decreased with increase in the NaOH concentration.The hydrogen evolution reaction(HER)kinetics was not improved on the passive layer covered surface of the Mg-RE alloys in contrast to the improvements reported on the hydroxide covered pure magnesium.The electrochemical impedance increased with increase in the NaOH concentration in the solution treated condition of both Mg-RE alloys,whereas the overaged EV31A alloy showed a reverse trend.The passive layer of EV31A showed almost 100%higher charge carrier density than the film formed on the WE43C in the overaged condition.A better passivation behavior was observed in the solution treated condition than that in the overaged condition which could be attributed to the uniform distribution of the RE elements in the solution treated specimens.The WE43C alloy revealed better corrosion resistance in the alkaline solution than the EV31A alloy.展开更多
文摘The metal vapor synthesis (MVS) methed was used to prepare activatedcarbon supported nickel electrode. The electrocatalytic activity of the electrode forhydrogen evolution reaction(HGR) in alkaline solution was studied. Cathodicpolarization curves showed the electrocatalytic activity of Ni/C electrode prepared byMVS method was higher than that of the one prepared by conventional method.
基金Projects(51772086,51872087,51971089)supported by the National Natural Science Foundation of ChinaProject(2018TP1037-202102)supported by Open Fund of Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion,China+1 种基金Project supported by Student National SIT Innovation Program,ChinaProject(2020CB1007)supported by Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy,China。
文摘The exploration of stable and highly efficient alkaline hydrogen evolution reaction(HER)electrocatalysts is imperative for alkaline water splitting.Herein,Se-doped NiCoP with hierarchical nanoarray structures directly grown on carbon cloth(Se-NiCoP/CC)was prepared by hydrothermal reaction and phosphorization/selenization process.The experimental results reveal that Se doping could increase the electrochemical active sites and alter the electronic structure of NiCoP.The optimized Se-NiCoP/CC electrode exhibits outstanding HER activity in alkaline electrolyte,which only needs a low overpotential of 79 mV at the current density of 10 mA/cm^(2).When serving as anode and cathode electrode simultaneously,the Se-NiCoP/CC electrodes achieve current density of 50 mA/cm^(2) at a low voltage of only 1.62 V.This work provides a feasible way to rationally design high active HER electrocatalysts.
基金supported by National Natural Science Foundation of China(Nos.21773184 and 21671158)Key Science and Technology Project of Henan(No.202102210238)+1 种基金Natural Science Foundation of Henan(No.212300410339)Cultivation Program for Young Backbone Teachers in Henan University of Technology(Nos.21420108 and 21420073).
文摘Crystalline engineering and heterostructure have attracted much attention as effective strategies to improve the electrocatalytic activity for hydrogen evolution reaction(HER).In this study,a new heterostructure catalyst(Ru/RuS_(2)@N-rGO)with low crystallinity was fabricated by a simple and low-temperature method for HER in alkaline solution,applying the Na_(2)SO_(4)as S source and polypyrrole as N source.Optimizing through the controllable crystalline engineering and composition ratio of Ru and RuS_(2),the Ru/RuS_(2)@N-rGO heterocatalyst at the calcining 500°C revealed highly efficient HER activity with overpotential 18 mV at a current density 10 mA/cm^(2)and remarkable stability for 24 h in 1.0 mol/L KOH.This work provides a facile and effective method in designing advanced electrocatalysts for HER in the alkaline electrolytes by synergistically structural and component modulations.
文摘The performance of Al-alloy anode in 4 mol/L KOH with and without stannate and o-aminophenol at 25℃ and 55℃ was studied by hydrogen collection, potentiodynamic polarization and electrochemical impedance spectrum, o-aminophenol acts as a perfect inhibitor because of its adsorbability and forming chelate complex at its optimum concentration of 0.4 mol/L. Stannate enhances the inhibition of o-aminophenol and improves the activity of Al-alloy because of its reduction to tin. There is synergetic effect of stannate with o-aminophenol on the behavior of Al-alloy, and the inhibitive efficiency at 55℃ is better than that at 25 ℃.
基金The support provided by the U.S. Nuclear Regulatory Commission through a faculty development grant NRC-HQ-84-15-G-0025 is gratefully acknowledged. J. Ninlachart acknowledges the support by Royal Thai Navy.
文摘Passivation kinetics of two Mg-RE alloys,such as Mg-Nd-Gd-Zn-Zr(EV31A),and Mg-Y-Nd-Gd-Zr(WE43C)were investigated in two different heat treated conditions(solution treated and overaged)in 0.01-1.0 M NaOH solutions under potentiostatic conditions.Negative reaction order was observed in dilute NaOH which transitioned to positive values as the passivation time increased and in the 1 M NaOH as well.The passive layers showed platelet morphology and the size of the platelets decreased with increase in the NaOH concentration.The hydrogen evolution reaction(HER)kinetics was not improved on the passive layer covered surface of the Mg-RE alloys in contrast to the improvements reported on the hydroxide covered pure magnesium.The electrochemical impedance increased with increase in the NaOH concentration in the solution treated condition of both Mg-RE alloys,whereas the overaged EV31A alloy showed a reverse trend.The passive layer of EV31A showed almost 100%higher charge carrier density than the film formed on the WE43C in the overaged condition.A better passivation behavior was observed in the solution treated condition than that in the overaged condition which could be attributed to the uniform distribution of the RE elements in the solution treated specimens.The WE43C alloy revealed better corrosion resistance in the alkaline solution than the EV31A alloy.