Zero-emission eco-friendly vehicles with partly or fully electric powertrains have exhibited rapidly increased demand for reducing the emissions of air pollutants and improving the energy efficiency. Advanced catalyti...Zero-emission eco-friendly vehicles with partly or fully electric powertrains have exhibited rapidly increased demand for reducing the emissions of air pollutants and improving the energy efficiency. Advanced catalytic and energy materials are essential as the significant portions in the key technologies of eco-friendly vehicles, such as the exhaust emission control system,power lithium ion battery and hydrogen fuel cell. Precise synthesis and surface modification of the functional materials and electrodes are required to satisfy the efficient surface and interface catalysis, as well as rapid electron/ion transport. Atomic layer deposition(ALD), an atomic and close-to-atomic scale manufacturing method, shows unique characteristics of precise thickness control, uniformity and conformality for film deposition, which has emerged as an important technique to design and engineer advanced catalytic and energy materials. This review has summarized recent process of ALD on the controllable preparation and modification of metal and oxide catalysts, as well as lithium ion battery and fuel cell electrodes. The enhanced catalytic and electrochemical performances are discussed with the unique nanostructures prepared by ALD. Recent works on ALD reactors for mass production are highlighted. The challenges involved in the research and development of ALD on the future practical applications are presented, including precursor and deposition process investigation, practical device performance evaluation, large-scale and efficient production, etc.展开更多
Decarbonizing power systems is crucial to mitigating climate change impacts and achieving carbon neutrality.Increasing renewable energy supply can reduce greenhouse gas emissions and accelerate the decarbonization pro...Decarbonizing power systems is crucial to mitigating climate change impacts and achieving carbon neutrality.Increasing renewable energy supply can reduce greenhouse gas emissions and accelerate the decarbonization process.However,renewable energy sources(RESs)such as wind and solar power are characterized by intermittency and often non-dispatchability,significantly challenging their high-level integration into power systems.Energy storage is acknowledged as a vital indispensable solution for mitigating the intermittency of renewables such as wind and solar power and boosting the penetrations of renewables.In the CSEE JPES Forum,five well-known experts were invited to give keynote speeches,and the participating experts and scholars had comprehensive exchanges and discussions on energy storage technologies.Specifically,the views on the design,control,performance,and applications of new energy storage technologies,such as the fuel cell vehicle,water electrolysis,and flow battery,in the coordination and operation of power and energy systems were analyzed.The experts also provided experience that could be used to develop energy storage for constructing and decarbonizing new power systems.展开更多
基金supported by the National Key R&D Program of China (2020YFB2010401 and 2022YFF1500400)National Natural Science Foundation of China (51835005and 52271216)+2 种基金Hubei Province Natural Science Foundation for Innovative Research Group (2020CFA030)Fundamental Research Funds for the Central Universities,HUST(2020kfy XJJS100)Tencent Foundation。
文摘Zero-emission eco-friendly vehicles with partly or fully electric powertrains have exhibited rapidly increased demand for reducing the emissions of air pollutants and improving the energy efficiency. Advanced catalytic and energy materials are essential as the significant portions in the key technologies of eco-friendly vehicles, such as the exhaust emission control system,power lithium ion battery and hydrogen fuel cell. Precise synthesis and surface modification of the functional materials and electrodes are required to satisfy the efficient surface and interface catalysis, as well as rapid electron/ion transport. Atomic layer deposition(ALD), an atomic and close-to-atomic scale manufacturing method, shows unique characteristics of precise thickness control, uniformity and conformality for film deposition, which has emerged as an important technique to design and engineer advanced catalytic and energy materials. This review has summarized recent process of ALD on the controllable preparation and modification of metal and oxide catalysts, as well as lithium ion battery and fuel cell electrodes. The enhanced catalytic and electrochemical performances are discussed with the unique nanostructures prepared by ALD. Recent works on ALD reactors for mass production are highlighted. The challenges involved in the research and development of ALD on the future practical applications are presented, including precursor and deposition process investigation, practical device performance evaluation, large-scale and efficient production, etc.
文摘Decarbonizing power systems is crucial to mitigating climate change impacts and achieving carbon neutrality.Increasing renewable energy supply can reduce greenhouse gas emissions and accelerate the decarbonization process.However,renewable energy sources(RESs)such as wind and solar power are characterized by intermittency and often non-dispatchability,significantly challenging their high-level integration into power systems.Energy storage is acknowledged as a vital indispensable solution for mitigating the intermittency of renewables such as wind and solar power and boosting the penetrations of renewables.In the CSEE JPES Forum,five well-known experts were invited to give keynote speeches,and the participating experts and scholars had comprehensive exchanges and discussions on energy storage technologies.Specifically,the views on the design,control,performance,and applications of new energy storage technologies,such as the fuel cell vehicle,water electrolysis,and flow battery,in the coordination and operation of power and energy systems were analyzed.The experts also provided experience that could be used to develop energy storage for constructing and decarbonizing new power systems.