Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER...Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER). In this paper, LiaSiO4 ceramic pebbles deposited with catalytic metals, including Pt, Pd, Ru and Ir, were prepared by wet impregnation method. The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-D20 gas system, with conversion equilibrium temperature reduction of 200-300 ~C. The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor. The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures, and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/LiaSiO4 was much more than that of Li4SiO4, which released mainly as HTO. Thus, catalytic metals deposited on LiaSiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region, and increase the tritium molecule form released from the tritium breedin~ materials.展开更多
We report herein a visible light-mediated direct deuteration of alkenes with D_(2)O or deuterated methanol(MeOD)using a cobaloxime as a hydrogen/deuterium(H/D)exchange catalyst.The synergistic photoredox/Co catalysis ...We report herein a visible light-mediated direct deuteration of alkenes with D_(2)O or deuterated methanol(MeOD)using a cobaloxime as a hydrogen/deuterium(H/D)exchange catalyst.The synergistic photoredox/Co catalysis enabled facile deuterium(D)-incorporation of a variety of terminal and internal alkenes at either terminal or benzylic positions.We proposed that this process proceeded through a sequence of reversible addition-elimination reactions and fast proton exchange involving Co(III)–H,which was generated in situ by photoreduction.展开更多
基金supported by the Development Fund of China Academy of Engineering Physics (No.2010B0301035)the National Magnetic Confinement Fusion Science Program (No. 2010GB112004)
文摘Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER). In this paper, LiaSiO4 ceramic pebbles deposited with catalytic metals, including Pt, Pd, Ru and Ir, were prepared by wet impregnation method. The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-D20 gas system, with conversion equilibrium temperature reduction of 200-300 ~C. The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor. The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures, and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/LiaSiO4 was much more than that of Li4SiO4, which released mainly as HTO. Thus, catalytic metals deposited on LiaSiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region, and increase the tritium molecule form released from the tritium breedin~ materials.
基金the Natural Science Foundation of China(grant nos.91956000,22031006,21861132003),Tsinghua University Initiative Scientific Research Program,and Haihe Laboratory of Sustainable Chemical Transformations for financial support.
文摘We report herein a visible light-mediated direct deuteration of alkenes with D_(2)O or deuterated methanol(MeOD)using a cobaloxime as a hydrogen/deuterium(H/D)exchange catalyst.The synergistic photoredox/Co catalysis enabled facile deuterium(D)-incorporation of a variety of terminal and internal alkenes at either terminal or benzylic positions.We proposed that this process proceeded through a sequence of reversible addition-elimination reactions and fast proton exchange involving Co(III)–H,which was generated in situ by photoreduction.