The selective catalytic oxidation of toluene with hydrogen peroxide over V-Mo-based catalysts under mild conditions was studied.The promotion effect of Mo on the catalysts was studied with V/Al2O3 and Mo/Al2O3 as refe...The selective catalytic oxidation of toluene with hydrogen peroxide over V-Mo-based catalysts under mild conditions was studied.The promotion effect of Mo on the catalysts was studied with V/Al2O3 and Mo/Al2O3 as reference samples.The catalysts were characterized by XRD,TPR,and XPS techniques.The results show that the addition of Mo to V/Al2O3 may change the distribution of V species on Al2O3 surface.Over V-Mo/Al2O3 catalyst,highly dispersed amorphous V species facilitates benzaldehyde formation,and crystalline V2O5 species increases the conversion of toluene but decreases the selectivity to benzaldehyde,while AlVMoO7 species favors both the conversion of toluene and the formation of cresols.The yield of benzaldehyde depends remarkably on the surface O/Al and Mo/V atomic ratios,and gets to a maximum value of 13.2% with a selectivity of 79.5% at an O/Al atomic ratio of 3.0 and Mo/V atomic ratio of 0.7.展开更多
The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets ...The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.展开更多
Single atom catalysts(SACs)with metal_(1)-N_(x)sites have shown promising activity and selectivity in direct catalytic oxidation of benzene to phenol.The reaction pathway is considered to be involving two steps,includ...Single atom catalysts(SACs)with metal_(1)-N_(x)sites have shown promising activity and selectivity in direct catalytic oxidation of benzene to phenol.The reaction pathway is considered to be involving two steps,including a H_(2)O_(2)molecule dissociated on the metal single site to form the(metal_(1)-N_(x))=O active site,and followed by the dissociation of another H_(2)O_(2)on the other side of metal atom to form O=(metal_(1)-N_(x))=O intermediate center,which is active for the adsorption of benzene molecule via the formation of a C-O bond to form phenol.In this manuscript,we report a Cu SAC with nitrogen and oxygen dual-coordination(Cu1-N3O1 moiety)that doesn’t need the first H_(2)O_(2)activation process,as verified by both experimental and density function theory(DFT)calculations results.Compared with the counterpart nitrogen-coordinated Cu SAC(denoted as Cu1/NC),Cu SAC with nitrogen and oxygen dual-coordination(denoted as Cu1/NOC)exhibits 2.5 times higher turnover frequency(TOF)and 1.6 times higher utilization efficiency of H_(2)O_(2).Particularly,the coordination number(CN)of Cu atom in Cu1/NOC maintains four even after H_(2)O_(2)treatment and reaction.Combining DFT calculations,the dynamic evolution of single atomic Cu with nitrogen and oxygen dualcoordination in hydroxylation of benzene is proposed.These findings provide an efficient route to improve the catalytic performance through regulating the coordination environments of SACs and demonstrate a new reaction mechanism in hydroxylation of benzene to phenol reaction.展开更多
A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were...A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were characterized by nitrogen adsorption-desorption,low and wide-angle X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),scanning electron microscopy(SEM),elemental mapping and energy-dispersive X-ray(EDX)methods.It was found that the particle size,electronic interactions,morphology,and textural properties of these catalysts as well as their catalytic activity in the reaction of H_(2) with O_(2) were affected by Co addition and different calcination temperatures.Also,the results showed that while the H_(2)O_(2) selectivity depends on Pd^(2+) species,the H_(2) conversion is related to Pd0 active sites.Among these catalysts,CoPd/KIT-6 calcined at 350℃(CoPd/KIT-350 catalyst)showed the best catalytic activity with 50%of H_(2)O_(2) selectivity and 51%conversion of H_(2).展开更多
A series of bimetallic Pd-Pb catalysts with a constant Pd content of 1 wt%and Pb/Pd atomic ratio from 0 to 1.6 supported on γ-Al2O3 were prepared and used for glycerol oxidation with H2O2 as the oxidizing agent at at...A series of bimetallic Pd-Pb catalysts with a constant Pd content of 1 wt%and Pb/Pd atomic ratio from 0 to 1.6 supported on γ-Al2O3 were prepared and used for glycerol oxidation with H2O2 as the oxidizing agent at atmospheric pressure,45℃ and pH =11.The morphology and dispersion of the catalysts were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX) and transmission electron microscopy(TEM).The presence of an alloy phase in the bimetallic catalyst was detected by X-ray photoelectron spectroscopy(XPS).Glycerol conversion obtained with the monometallic Pd catalyst was 19%,which was increased to 100%with the addition of Pb.The four bimetallic PdPb catalysts were able to oxidize glycerol to dihydroxyacetone(DIHA) and the selectivity to DIHA reached 59%,58%,34%and 25%for PdPb0.25,PdPb0.50,PdPb1.00 and PdPbl.60 catalysts,respectively.展开更多
The Cu-Fe/AC catalyst was prepared by microwave-assisted synthesis, and its morphological characteristics were characterized. The degradation effect of phenol wastewater by catalytic wet peroxide oxidation(CWPO) was s...The Cu-Fe/AC catalyst was prepared by microwave-assisted synthesis, and its morphological characteristics were characterized. The degradation effect of phenol wastewater by catalytic wet peroxide oxidation(CWPO) was studied, and the response surface methodology(RSM) was used to analyze the influencing factors of the removal rate of COD. The experimental results showed that under the conditions of reaction temperature 80 ℃, reaction time 90 min, initial pH 3.1 and H_(2)O_(2)addition 2.2 g/L, the removal rate of COD reached 82%. The results of response surface methodology indicated that under the conditions of reaction temperature 100 ℃, reaction time 64 min, initial pH 3.3 and H_(2)O_(2)addition 2.7 g/L, the removal rate of COD was up to 86%. After Cu-Fe/AC catalyst was reused for 4 times, the removal rate of COD was still above 80%, revealing that the catalyst showed good catalytic performance.展开更多
The serious limitations of available technologies for decontamination of wastewater have compelled researchers to search for alternative solutions. Catalytic treatment with hydrogen peroxide, which appears to be one o...The serious limitations of available technologies for decontamination of wastewater have compelled researchers to search for alternative solutions. Catalytic treatment with hydrogen peroxide, which appears to be one of the most efficient treatment systems, is able to degrade various organics with the help of powerful ·OH radicals. This review focuses on recent progress in the use of bicarbonate activated hydrogen peroxide for wastewater treatment. The introduction of bicarbonate to pollutant treatment has led to appreciable improvements, not only in process efficiency, but also in process stability. This review describes in detail the applications of this process in homogeneous and heterogeneous systems. The enhanced degradation, limited or lack of leaching during heterogeneous degradation, and prolonged catalysts stability during degradation are salient features of this system. This review provides readers with new knowledge regarding bicarbonate, including the fact that it does not always harm pollutant degradation, and can significantly benefit degradation under some conditions.展开更多
Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with...Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with tungstate anion were designed and prepared.It was found that dodecyltrimethylammonium tungstate could catalyzed degradation of phenol into gases and water thoroughly at 323 k in 8 h.Tungstate anion revealed good catalytic oxidative activity and long carbon chain group connecting with cation of ionic liquids enriched phenol around catalysts,which induced the complete degradation of phenol at mild conditions.Increasing the amounts of hydrogen peroxide benefited to the total degradation of phenol.In addition,the ionic liquid could be reused for its excellent thermal stability.Our work provided a different strategy to treat waste water containing phenol efficiently.展开更多
Two groups of mixed oxides La2-xThxCuO4±λ(0.0≤x≤0.4)and La2-xSrxCuO4±λ(0.0≤x≤1.0) were prepared.Their crystal structures were studied with XRD and IR spectra,etc.Meanwhile,the average valence of Cu ion...Two groups of mixed oxides La2-xThxCuO4±λ(0.0≤x≤0.4)and La2-xSrxCuO4±λ(0.0≤x≤1.0) were prepared.Their crystal structures were studied with XRD and IR spectra,etc.Meanwhile,the average valence of Cu ions and nonstoichiometric oxygen (λ) was measured through chemical analyses.Catalysis of the above-mentioned mixed oxides was investigated in phenol hydroxylation,good results were obtained for some mixed oxides,and found that the catalysis of these mixed oxides have close relation with their defect structure and composition.A radical substitution mechanism was also proposed for this catalytic reaction.展开更多
In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and su...In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors.展开更多
In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5...In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5-,ZnPOM,supported on ionic liquids-modified with MWCNTs,MWCNTAPIB,is reported.This catalyst[ZnPOM@APIB-MWCNT],was characterized by X-ray diffraction,scanning electron microscopy(SEM) and FT-IR spectroscopic methods.This heterogeneous catalyst exhibited high stability and reusability in the oxidation reaction without loss of its catalytic performance.展开更多
Mixed oxides Ln2CuO4±λ(Ln=La,Pr,Nd,Sm,Gd) with K2NiF4 structure were prepared Their crystal structures were studied with XRD and IR spectra.Meanwhile,the average valence of Cu ions and non stoichiometric oxygen ...Mixed oxides Ln2CuO4±λ(Ln=La,Pr,Nd,Sm,Gd) with K2NiF4 structure were prepared Their crystal structures were studied with XRD and IR spectra.Meanwhile,the average valence of Cu ions and non stoichiometric oxygen (λ) were determined through chemical analyses.Catalysis of the above-mentioned mixed oxides in the phenol hydroxylation was investigated.Results show that the catalysis of these mixed oxides has close relation with their structures and composition.Substitution of A site atom in Ln2CuO4λ has a great influence on then eatalysis in the phenol hydroxylation.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.20502017and20072024)the Teaching and ResearchAward Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education,Chinathe ScienceFoundation for Young Teachers of Sichuan University.
文摘The selective catalytic oxidation of toluene with hydrogen peroxide over V-Mo-based catalysts under mild conditions was studied.The promotion effect of Mo on the catalysts was studied with V/Al2O3 and Mo/Al2O3 as reference samples.The catalysts were characterized by XRD,TPR,and XPS techniques.The results show that the addition of Mo to V/Al2O3 may change the distribution of V species on Al2O3 surface.Over V-Mo/Al2O3 catalyst,highly dispersed amorphous V species facilitates benzaldehyde formation,and crystalline V2O5 species increases the conversion of toluene but decreases the selectivity to benzaldehyde,while AlVMoO7 species favors both the conversion of toluene and the formation of cresols.The yield of benzaldehyde depends remarkably on the surface O/Al and Mo/V atomic ratios,and gets to a maximum value of 13.2% with a selectivity of 79.5% at an O/Al atomic ratio of 3.0 and Mo/V atomic ratio of 0.7.
基金Supported by the National Natural Science Foundation of China (50921063,51104191)the Natural Science Foundationof Chongqing (2009BA6047)
文摘The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.
基金We thank the National Key R&D Program of China(Nos.2018YFA0703503 and 2018YFA0208504)the National Natural Science Foundation of China(No.21932006)the Youth Innovation Promotion Association of CAS(No.2017049)for financial support.
文摘Single atom catalysts(SACs)with metal_(1)-N_(x)sites have shown promising activity and selectivity in direct catalytic oxidation of benzene to phenol.The reaction pathway is considered to be involving two steps,including a H_(2)O_(2)molecule dissociated on the metal single site to form the(metal_(1)-N_(x))=O active site,and followed by the dissociation of another H_(2)O_(2)on the other side of metal atom to form O=(metal_(1)-N_(x))=O intermediate center,which is active for the adsorption of benzene molecule via the formation of a C-O bond to form phenol.In this manuscript,we report a Cu SAC with nitrogen and oxygen dual-coordination(Cu1-N3O1 moiety)that doesn’t need the first H_(2)O_(2)activation process,as verified by both experimental and density function theory(DFT)calculations results.Compared with the counterpart nitrogen-coordinated Cu SAC(denoted as Cu1/NC),Cu SAC with nitrogen and oxygen dual-coordination(denoted as Cu1/NOC)exhibits 2.5 times higher turnover frequency(TOF)and 1.6 times higher utilization efficiency of H_(2)O_(2).Particularly,the coordination number(CN)of Cu atom in Cu1/NOC maintains four even after H_(2)O_(2)treatment and reaction.Combining DFT calculations,the dynamic evolution of single atomic Cu with nitrogen and oxygen dualcoordination in hydroxylation of benzene is proposed.These findings provide an efficient route to improve the catalytic performance through regulating the coordination environments of SACs and demonstrate a new reaction mechanism in hydroxylation of benzene to phenol reaction.
基金the financial support(Research Council Grant)provided by Isfahan University of Technology(Iran).
文摘A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were characterized by nitrogen adsorption-desorption,low and wide-angle X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),scanning electron microscopy(SEM),elemental mapping and energy-dispersive X-ray(EDX)methods.It was found that the particle size,electronic interactions,morphology,and textural properties of these catalysts as well as their catalytic activity in the reaction of H_(2) with O_(2) were affected by Co addition and different calcination temperatures.Also,the results showed that while the H_(2)O_(2) selectivity depends on Pd^(2+) species,the H_(2) conversion is related to Pd0 active sites.Among these catalysts,CoPd/KIT-6 calcined at 350℃(CoPd/KIT-350 catalyst)showed the best catalytic activity with 50%of H_(2)O_(2) selectivity and 51%conversion of H_(2).
基金supported by CONICET(PIP 0276)UNLP(Projects X 700)+1 种基金UNNOBA(SIB 2924/14)Ministry of Education and Sports(Call "Jorge Sabato" Project 44-144-415),Argentina
文摘A series of bimetallic Pd-Pb catalysts with a constant Pd content of 1 wt%and Pb/Pd atomic ratio from 0 to 1.6 supported on γ-Al2O3 were prepared and used for glycerol oxidation with H2O2 as the oxidizing agent at atmospheric pressure,45℃ and pH =11.The morphology and dispersion of the catalysts were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX) and transmission electron microscopy(TEM).The presence of an alloy phase in the bimetallic catalyst was detected by X-ray photoelectron spectroscopy(XPS).Glycerol conversion obtained with the monometallic Pd catalyst was 19%,which was increased to 100%with the addition of Pb.The four bimetallic PdPb catalysts were able to oxidize glycerol to dihydroxyacetone(DIHA) and the selectivity to DIHA reached 59%,58%,34%and 25%for PdPb0.25,PdPb0.50,PdPb1.00 and PdPbl.60 catalysts,respectively.
文摘The Cu-Fe/AC catalyst was prepared by microwave-assisted synthesis, and its morphological characteristics were characterized. The degradation effect of phenol wastewater by catalytic wet peroxide oxidation(CWPO) was studied, and the response surface methodology(RSM) was used to analyze the influencing factors of the removal rate of COD. The experimental results showed that under the conditions of reaction temperature 80 ℃, reaction time 90 min, initial pH 3.1 and H_(2)O_(2)addition 2.2 g/L, the removal rate of COD reached 82%. The results of response surface methodology indicated that under the conditions of reaction temperature 100 ℃, reaction time 64 min, initial pH 3.3 and H_(2)O_(2)addition 2.7 g/L, the removal rate of COD was up to 86%. After Cu-Fe/AC catalyst was reused for 4 times, the removal rate of COD was still above 80%, revealing that the catalyst showed good catalytic performance.
基金supported by the National Natural Science Foundation of China(21273086)~~
文摘The serious limitations of available technologies for decontamination of wastewater have compelled researchers to search for alternative solutions. Catalytic treatment with hydrogen peroxide, which appears to be one of the most efficient treatment systems, is able to degrade various organics with the help of powerful ·OH radicals. This review focuses on recent progress in the use of bicarbonate activated hydrogen peroxide for wastewater treatment. The introduction of bicarbonate to pollutant treatment has led to appreciable improvements, not only in process efficiency, but also in process stability. This review describes in detail the applications of this process in homogeneous and heterogeneous systems. The enhanced degradation, limited or lack of leaching during heterogeneous degradation, and prolonged catalysts stability during degradation are salient features of this system. This review provides readers with new knowledge regarding bicarbonate, including the fact that it does not always harm pollutant degradation, and can significantly benefit degradation under some conditions.
基金financially supported by the National Natural Science Foundation of China(21875265,22293015,22121002)。
文摘Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with tungstate anion were designed and prepared.It was found that dodecyltrimethylammonium tungstate could catalyzed degradation of phenol into gases and water thoroughly at 323 k in 8 h.Tungstate anion revealed good catalytic oxidative activity and long carbon chain group connecting with cation of ionic liquids enriched phenol around catalysts,which induced the complete degradation of phenol at mild conditions.Increasing the amounts of hydrogen peroxide benefited to the total degradation of phenol.In addition,the ionic liquid could be reused for its excellent thermal stability.Our work provided a different strategy to treat waste water containing phenol efficiently.
文摘Two groups of mixed oxides La2-xThxCuO4±λ(0.0≤x≤0.4)and La2-xSrxCuO4±λ(0.0≤x≤1.0) were prepared.Their crystal structures were studied with XRD and IR spectra,etc.Meanwhile,the average valence of Cu ions and nonstoichiometric oxygen (λ) was measured through chemical analyses.Catalysis of the above-mentioned mixed oxides was investigated in phenol hydroxylation,good results were obtained for some mixed oxides,and found that the catalysis of these mixed oxides have close relation with their defect structure and composition.A radical substitution mechanism was also proposed for this catalytic reaction.
基金received from the National Natural Science Foundation of China(Nos.21522606,21676246,21476201,21436007,U1462201,and 21376216)supported by Zhejiang Provincial Natural Science Foundation of China(No.LR17B060003)Major Science and Technology Project of Water Pollution Control and Management(No.2017ZX07101)
文摘In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors.
基金the Yazd University Research Council for partial support of this work
文摘In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5-,ZnPOM,supported on ionic liquids-modified with MWCNTs,MWCNTAPIB,is reported.This catalyst[ZnPOM@APIB-MWCNT],was characterized by X-ray diffraction,scanning electron microscopy(SEM) and FT-IR spectroscopic methods.This heterogeneous catalyst exhibited high stability and reusability in the oxidation reaction without loss of its catalytic performance.
基金Project supported by the National Natural Science Foundation of China
文摘Mixed oxides Ln2CuO4±λ(Ln=La,Pr,Nd,Sm,Gd) with K2NiF4 structure were prepared Their crystal structures were studied with XRD and IR spectra.Meanwhile,the average valence of Cu ions and non stoichiometric oxygen (λ) were determined through chemical analyses.Catalysis of the above-mentioned mixed oxides in the phenol hydroxylation was investigated.Results show that the catalysis of these mixed oxides has close relation with their structures and composition.Substitution of A site atom in Ln2CuO4λ has a great influence on then eatalysis in the phenol hydroxylation.