期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Loss of algal Proton Gradient Regulation 5 increases reactive oxygen species scavenging and H2 evolution 被引量:2
1
作者 Mei Chen Jin Zhang +5 位作者 Lei Zhao Jiale Xing Lianwei Peng Tingyun Kuang Jean-David Rochaix Fang Huang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2016年第12期943-946,共4页
Summary We have identified hpm91, a Chlamydomonas mutant lacking Proton Gradient Regulation5 (PGRS) capable of producing hydrogen (H2) for 25 days with more than 3o-fold yield increase compared to wild type. Thus,... Summary We have identified hpm91, a Chlamydomonas mutant lacking Proton Gradient Regulation5 (PGRS) capable of producing hydrogen (H2) for 25 days with more than 3o-fold yield increase compared to wild type. Thus, hpm91 displays a higher capacity of H2 production than a previously characterized pgr5 mutant. Physiological and biochemical characterization of hpm91 reveal that the prolonged H2 production is due to enhanced stability of PSII, which correlates with increased reactive oxygen species (ROS) scavenging capacity during sulfur depriva- tion. This anti-ROS response appears to protect the photosynthetic electron transport chain from photo- oxidative damage and thereby ensures electron supply to the hydrogenase. 展开更多
关键词 Chlamydomonas reinhardtii hpm91 hydrogen photoproduction oxidative stress photosystem II sulfur deprivation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部