期刊文献+
共找到3,333篇文章
< 1 2 167 >
每页显示 20 50 100
Highly mass activity electrocatalysts with ultralow Pt loading on carbon black for hydrogen evolution reaction
1
作者 Shaorou Ke Yajing Zhao +6 位作者 Xin Min Yanghong Li Ruiyu Mi Yangai Liu Xiaowen Wu Minghao Fang Zhaohui Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期182-190,共9页
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s... Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts. 展开更多
关键词 hydrogen evolution reaction ultralow platinum in-situ synthesis ULTRASOUND
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:2
2
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility hydrogen evolution reaction
下载PDF
Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction 被引量:1
3
作者 Jing Jin Xinyao Wang +4 位作者 Yang Hu Zhuang Zhang Hongbo Liu Jie Yin Pinxian Xi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期14-24,共11页
Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performan... Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy. 展开更多
关键词 hydrogen evolution reaction S vacancies NANOSHEET H Adsorption
下载PDF
In situ infrared, Raman and X-ray spectroscopy for the mechanistic understanding of hydrogen evolution reaction
4
作者 Andi Haryanto Kyounghoon Jung +1 位作者 Chan Woo Lee Dong-Wan Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期632-651,I0014,共21页
Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely use... Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER. 展开更多
关键词 hydrogen evolution reaction Infrared spectroscopy Raman spectroscopy X-ray absorption spectroscopy reaction mechanism
下载PDF
Exploring the Cation Regulation Mechanism for Interfacial Water Involved in the Hydrogen Evolution Reaction by In Situ Raman Spectroscopy
5
作者 Xueqiu You Dongao Zhang +4 位作者 Xia‑Guang Zhang Xiangyu Li Jing‑Hua Tian Yao‑Hui Wang Jian‑Feng Li 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期303-312,共10页
Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.U... Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.Unfortunately,investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment.Here,the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry,in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques.Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction.When comparing the different cation electrolyte systems at a given potential,the frequency of the interfacial water peak increases in the specified order:Li+<Na^(+)<K^(+)<Ca^(2+)<Sr^(2+).The structure of interfacial water was optimized by adjusting the radius,valence,and concentration of cation to form the two-H down structure.This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance.Therefore,local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure. 展开更多
关键词 In situ Raman Interfacial water hydrogen evolution reaction CATIONS
下载PDF
Atomic-level coupled RuO_(2)/BaRuO_(3) heterostructure for efficient alkaline hydrogen evolution reaction
6
作者 Yueying Yan Tian Meng +4 位作者 Yuting Chen Yang Yang Dewen Wang Zhicai Xing Xiurong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期356-362,I0009,共8页
The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy b... The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy barrier of water dissociation and regulating the binding strength of adsorption intermediates are crucial strategy for boosting the catalytic performance of HER.In this study,RuO_(2)/BaRuO_(3)(RBRO)heterostructures with abundant oxygen vacancies and lattice distortion were in-situ constructed under a low temperature via the thermal decomposition of gel-precursor.The RBRO heterostructures obtained at 550℃ exhibited the highest HER activity in 1 M KOH,showing an ultra-low overpotential of 16 mV at 10 mA cm^(-2)and a Tafel slope of 33.37 m V dec^(-1).Additionally,the material demonstrated remarkable durability,with only 25 mV of degradation in overpotential after 200 h of stability testing at 10 mA cm^(-2).Density functional theory calculations revealed that the redistribution of charges at the heterojunction interface can optimize the binding energies of H*and OH*and effectively lower the energy barrier of water dissociation.This research offers novel perspectives on surpassing the water dissociation threshold of alkaline HER catalysts by means of a systematic design of heterogeneous interfaces. 展开更多
关键词 HETEROSTRUCTURE hydrogen evolution reaction Interfacial electron transfer Oxygen vacancies
下载PDF
Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density:A review
7
作者 Zhipeng Li Xiaobin Liu +5 位作者 Qingping Yu Xinyue Qu Jun Wan Zhenyu Xiao Jingqi Chi Lei Wang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期33-60,共28页
The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past... The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past decades,researchers have reported a number of hydrogen evolution reaction(HER)electrocatalysts with activity comparable to that of commercial Pt/C,but most of them are tested within a small current density range,typically no more than 500 mA cm^(-2).To realize the industrial application of hydrogen production from water electrolysis,it is essential to develop high-efficiency HER electrocatalysts at high current density(HCD≥500 mA cm^(-2)).Nevertheless,it remains challenging and significant to rational design HCD electrocatalysts for HER.In this paper,the design strategy of HCD electrocatalysts is discussed,and some HCD electrocatalysts for HER are reviewed in seven categories(alloy,metal oxide,metal hydroxide,metal sulfide/selenide,metal nitride,metal phosphide and other derived electrocatalysts).At the end of this article,we also pro-pose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER. 展开更多
关键词 ELECTROCATALYST High current density hydrogen evolution reaction Water electrolysis
下载PDF
Unraveling the Harmonious Coexistence of Ruthenium States on a Self-Standing Electrode for Enhanced Hydrogen Evolution Reaction
8
作者 Joonhee Ma Jin Hyuk Cho +6 位作者 Chaehyeon Lee Moon Sung Kang Sungkyun Choi Ho Won Jang Sang Hyun Ahn Seoin Back Soo Young Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期303-311,共9页
The development of cost-effective,highly efficient,and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction(HER).Herein,a simplified synthesis protocol was designed to ac... The development of cost-effective,highly efficient,and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction(HER).Herein,a simplified synthesis protocol was designed to achieve a self-standing electrode,composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters(ACP/Ru_(SAC+C))via acid activation,immersion,and high-temperature pyrolysis.Ab initio molecular dynamics(AIMD)calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper.Furthermore,the coexistence states of the Ru atoms are confirmed via aberration-corrected scanning transmission electron microscopy(AC-STEM),X-ray photoelectron spectroscopy(XPS),and X-ray absorption spectroscopy(XAS).Experimental measurements and theoretical calculations reveal that introducing a Ru single-atom site adjacent to the Ru nanoclusters induces a synergistic effect,tuning the electronic structure and thereby significantly enhancing their catalytic performance.Notably,the ACP/Ru_(SAC+C)exhibits a remarkable turnover frequency(TOF)of 18 s^(−1)and an exceptional mass activity(MA)of 2.2 A mg^(−1),surpassing the performance of conventional Pt electrodes.The self-standing electrode,featuring harmoniously coexisting Ru states,stands out as a prospective choice for advancing HER catalysts,enhancing energy efficiency,productivity,and selectivity. 展开更多
关键词 ELECTROCATALYSIS electronic coupling effect hydrogen evolution reaction selfstanding electrode
下载PDF
Revealing interfacial charge redistribution of homologous Ru-RuS_(2) heterostructure toward robust hydrogen oxidation reaction
9
作者 Yi Liu Lianrui Cheng +5 位作者 Shuqing Zhou Yuting Yang Chenggong Niu Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期332-339,共8页
Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)... Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance. 展开更多
关键词 HETEROSTRUCTURE Hollow spherical structure hydrogen oxidation reaction Charge redistribution Density functional calculation
下载PDF
Fundamental Understanding of Hydrogen Evolution Reaction on Zinc Anode Surface:A First‑Principles Study
10
作者 Xiaoyu Liu Yiming Guo +6 位作者 Fanghua Ning Yuyu Liu Siqi Shi Qian Li Jiujun Zhang Shigang Lu Jin Yi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期180-191,共12页
Hydrogen evolution reaction(HER)has become a key factor affecting the cycling stability of aqueous Zn-ion batteries,while the corresponding fundamental issues involving HER are still unclear.Herein,the reaction mechan... Hydrogen evolution reaction(HER)has become a key factor affecting the cycling stability of aqueous Zn-ion batteries,while the corresponding fundamental issues involving HER are still unclear.Herein,the reaction mechanisms of HER on various crystalline surfaces have been investigated by first-principle calculations based on density functional theory.It is found that the Volmer step is the ratelimiting step of HER on the Zn(002)and(100)surfaces,while,the reaction rates of HER on the Zn(101),(102)and(103)surfaces are determined by the Tafel step.Moreover,the correlation between HER activity and the generalized coordination number(CN)of Zn at the surfaces has been revealed.The relatively weaker HER activity on Zn(002)surface can be attributed to the higher CN of surface Zn atom.The atomically uneven Zn(002)surface shows significantly higher HER activity than the flat Zn(002)surface as the CN of the surface Zn atom is lowered.The CN of surface Zn atom is proposed as a key descriptor of HER activity.Tuning the CN of surface Zn atom would be a vital strategy to inhibit HER on the Zn anode surface based on the presented theoretical studies.Furthermore,this work provides a theoretical basis for the in-depth understanding of HER on the Zn surface. 展开更多
关键词 Aqueous Zn-ion battery Zn anode hydrogen evolution reaction Coordination number First-principles calculation
下载PDF
Electronic Communication Between Co and Ru Sites Decorated on Nitrogen-Doped Carbon Nanotubes Boosting the Alkaline Hydrogen Evolution Reaction
11
作者 Meng-Ting Gao Ying Wei +8 位作者 Xue-Meng Hu Wenj-Jie Zhu Qing-Qing Liu Jin-Yuan Qiang Wan-Wan Liu Ying Wang Xu Li Jian-Feng Huang Yong-Qiang Feng 《电化学(中英文)》 CAS 北大核心 2024年第9期1-9,共9页
Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic ... Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic electrocatalyst composed of CoRu nanoalloy decorated on the N-doped carbon nanotubes(CoRu@N-CNTs),was prepared by reacting fullerenol with melamine via hydrothermal treatment and followed by pyrolysis.Benefiting from the electronic communication between Co and Ru sites,the as-obtained CoRu@N-CNTs catalyst exhibited superior electrocatalytic HER activity.To deliver a current density of 10 mA·cm^(-2),it required an overpotential of merely 19 mV along with a Tafel slope of 26.19 mV·dec^(-1)in 1 mol·L^(-1)potassium hydroxide(KOH)solution,outperforming the benchmark Pt/C catalyst.The present work would pave a new way towards the design and construction of an efficient electrocatalyst for energy storage and conversion. 展开更多
关键词 CoRu alloy ELECTROCATALYST Water splitting hydrogen evolution reaction Carbon nanotubes
下载PDF
Insights into the hydrogen evolution reaction in vanadium redox flow batteries:A synchrotron radiation based X-ray imaging study
12
作者 Kerstin Köble Alexey Ershov +7 位作者 Kangjun Duan Monja Schilling Alexander Rampf Angelica Cecilia TomášFaragó Marcus Zuber Tilo Baumbach Roswitha Zeis 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期132-144,共13页
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo... The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems. 展开更多
关键词 Vanadium redox flow battery Synchrotron X-ray imaging Tomography hydrogen evolution reaction Gas bubbles Deep learning
下载PDF
Accelerating the Screening of Modified MA_(2)Z_(4) Catalysts for Hydrogen Evolution Reaction by Deep Learning-Based Local Geometric Analysis
13
作者 Jingnan Zheng Shibin Wang +3 位作者 Shengwei Deng Zihao Yao Junhua Hu Jianguo Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期290-302,共13页
Machine learning(ML)integrated with density functional theory(DFT)calculations have recently been used to accelerate the design and discovery of single-atom catalysts(SACs)by establishing deep structure–activity rela... Machine learning(ML)integrated with density functional theory(DFT)calculations have recently been used to accelerate the design and discovery of single-atom catalysts(SACs)by establishing deep structure–activity relationships.The traditional ML models are always difficult to identify the structural differences among the single-atom systems with different modification methods,leading to the limitation of the potential application range.Aiming to the structural properties of several typical two-dimensional MA_(2)Z_(4)-based single-atom systems(bare MA_(2)Z_(4) and metal single-atom doped/supported MA_(2)Z_(4)),an improved crystal graph convolutional neural network(CGCNN)classification model was employed,instead of the traditional machine learning regression model,to address the challenge of incompatibility in the studied systems.The CGCNN model was optimized using crystal graph representation in which the geometric configuration was divided into active layer,surface layer,and bulk layer(ASB-GCNN).Through ML and DFT calculations,five potential single-atom hydrogen evolution reaction(HER)catalysts were screened from chemical space of 600 MA_(2)Z_(4)-based materials,especially V_(1)/HfSn_(2)N_(4)(S)with high stability and activity(Δ_(GH*)is 0.06 eV).Further projected density of states(pDOS)analysis in combination with the wave function analysis of the SAC-H bond revealed that the SAC-dz^(2)orbital coincided with the H-s orbital around the energy level of−2.50 eV,and orbital analysis confirmed the formation ofσbonds.This study provides an efficient multistep screening design framework of metal single-atom catalyst for HER systems with similar two-dimensional supports but different geometric configurations. 展开更多
关键词 graph convolutional neural network hydrogen evolution reaction modified MA_(2)Z_(4) substrate single atom catalyst
下载PDF
Hydrogenation reaction of metallic titanium prepared by molten salt electrolysis 被引量:1
14
作者 翁启钢 李瑞迪 +4 位作者 袁铁锤 史玉升 邱子力 蒋明祥 贺跃辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1425-1432,共8页
The hydrogenation reaction of electrolyzed titanium, as the first step during hydrogenation-dehydrogenation for the preparation of titanium powder, was studied. The titanium hydride was prepared through the reaction b... The hydrogenation reaction of electrolyzed titanium, as the first step during hydrogenation-dehydrogenation for the preparation of titanium powder, was studied. The titanium hydride was prepared through the reaction between electrolyzed titanium and hydrogen at different hydrogenation temperatures and different time. The evolutions of hydrogen and oxygen contents, density, hardness and phase composition before and after hydrogenation were characterized under different hydrogenation conditions. The results show that the main phases of titanium hydride were TiHl.924, TiH1.971 and TiH2. Increasing the hydrogenation temperature could not enhance the hydrogen content but increase the oxygen content. The effect of the hydrogenation time on the hydrogen content was not obvious. The optimal parameters of the hydrogenation process were obtained: beating at 400℃ and holding for 2 h, by which the hydrogen content of 3.63% and oxygen content of 0.18% (mass fraction) can be obtained. In addition, the microstructure, orientations and tissues of electrolyzed titanium and titanium hydride were detected. 展开更多
关键词 titanium powder hydrogenation reaction molten salt electrolysis hydrogen content
下载PDF
Kinetic Implication from Temperature Effect on Hydrogen Evolution Reaction at Ag Electrode
15
作者 康婧 林楚红 +1 位作者 姚瑶 陈艳霞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第1期63-68,I0003,I0004,共8页
Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa... Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa,app decreases with φ, while pre-exponential factor A remains nearly unchanged,which conforms well the prediction from Butler-Volmer equation. In contrast, with φ nega-tive shifts from the onset potential for HER to the potential of zero charge (PZC≈-0.4 V), both Ea,app and A for HER increase (e.g., Ea,app increases from 24 kJ/mol to 32 kJ/mol). The increase in Ea,app and A with negative shift in φ from -0.25 V to PZC is explained by the increases of both internal energy change and entropy change from reactants to the transition states, which is correlated with the change in the hydrogen bond network during HER. The positive entropy effects overcompensate the adverse effect from the increase in the activation energy, which leads to a net increase in HER current with the activation energy negative shift from the onset potential of HER to PZC. It is pointed out that entropy change may contribute greatly to the kinetics for electrode reaction which involves the transfer of electron and proton, such as HER. 展开更多
关键词 hydrogen evolution reaction Ag electrode Temperature effect Activation energy Pre-exponential factor Internal energy Entropy change
下载PDF
Effect of nickel phosphide nanoparticles crystallization on hydrogen evolution reaction catalytic performance 被引量:6
16
作者 陈亚琼 张金凤 +4 位作者 万磊 胡文彬 刘磊 钟澄 邓意达 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期369-376,共8页
In order to investigate the effect of nickel phosphide nanoparticles’ (Ni-P NPs) crystallization on hydrogen evolution reaction (HER) catalytic performance, amorphous Ni-P NPs and crystalline Ni12P5 were synt... In order to investigate the effect of nickel phosphide nanoparticles’ (Ni-P NPs) crystallization on hydrogen evolution reaction (HER) catalytic performance, amorphous Ni-P NPs and crystalline Ni12P5 were synthesized by a simple and low-cost autocatalytic reduction method and heat treatment process. The result of electrochemical tests shows that crystalline Ni12P5 has much higher HER catalytic activity than the amorphous one. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy revealed that Ni?P bond formed during crystallization, making Ni positively charged and P negatively charged. This charged nature of Ni12P5 is similar to [NiFe] hydrogenase and its analogous, which make the removal of H2 less energy-cost. 展开更多
关键词 hydrogen evolution reaction nickel phosphide nanoparticles Ni12P5 CATALYST CRYSTALLIZATION
下载PDF
Theoretical Study on Gas Phase Reactions of OH Hydrogen-Abstraction from Formyl Fluoride with Different Catalysts 被引量:1
17
作者 王定美 隆正文 +2 位作者 谭兴凤 龙波 张为俊 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第3期325-334,I0001,共11页
The mechanisms and kinetics of the gas phase reactions that the hydrogen atom in formyl fluoride (FCHO) abstracted by OH in the presence of water, formic acid (FA), or sulfuric acid (SA) are theoretically invest... The mechanisms and kinetics of the gas phase reactions that the hydrogen atom in formyl fluoride (FCHO) abstracted by OH in the presence of water, formic acid (FA), or sulfuric acid (SA) are theoretically investigated at the CCSD(T)/6-311++G(3df, 3pd)//MO6-2X/6- 311++G(3df, 3pd) level of theory. The calculated results show that the barriers of the transition states involving catalysts are lowered to -2.89, -6.25, and -7.76 kcal/mol from 3.64 kcal/mol with respect to the separate reactants, respectively, which reflects that those catalysts play an important role in reducing the barrier of the hydrogen abstraction reaction of FCHO with OH. Additionally, using conventional transition state theory with Eckart tun- neling correction, the kinetic data demonstrate that the entrance channel X…FCHO+OH (X=H2O, FA, or SA) is significantly more favorable than the pathway X…OH+FCHO. More- over, the rate constants of the reactions of FCHO with OH radical with H2O, FA, or SA introduced are computed to be smaller than that of the naked OH+FCHO reaction because the concentration of the formed X…FCHO or X…OH complex is quite low in the atmosphere. 展开更多
关键词 Formyl fluoride hydrogen abstraction reaction mechanisms Rate constants
下载PDF
Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes 被引量:7
18
作者 Tingting Cui Jinhu Dong +3 位作者 Xiulian Pan Tie Yu Qiang Fu Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期123-127,共5页
Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the ... Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the hydrogen evolution reaction(HER) process can be enhanced by encapsulation within single-walled carbon nanotubes(SWNTs) with a diameter of 1–2 nm. The catalyst with MoC_x NPs located on the interior surface of SWNTs(MoCx@SWNTs) exhibits a lower onset over-potential and a smaller Tafel slope than the one with MoC_x NPs attached on the exterior surface(MoCx/SWNTs). This is likely attributed to the much smaller particle size and the more reduced states of the confined MoC_x NPs, as well as the larger specific surface area of MoCx@SWNTs compared with Mo Cx/SWNTs. In addition, the electronic structure of the confined MoC_x NPs might be modified by the confinement effects of SWNTs, and hence the adsorption free energy of H atoms on the confined MoC_x NPs, which could also contribute to their higher performance. These results suggest that the SWNTs can be further explored for constructing novel catalysts with beneficial catalytic performance. 展开更多
关键词 SINGLE-WALLED carbon NANOTUBES CONFINED catalysis Molybdenum CARBIDE NANOPARTICLES hydrogen evolution reaction
下载PDF
Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives 被引量:15
19
作者 Zonghua Pu Ibrahim Saana Amiinu +8 位作者 Ruilin Cheng Pengyan Wang Chengtian Zhang Shichun Mu Weiyue Zhao Fengmei Su Gaixia Zhang Shijun Liao Shuhui Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期73-101,共29页
Hydrogen,a renewable and outstanding energy carrier with zero carbon dioxide emission,is regarded as the best alternative to fossil fuels.The most preferred route to large-scale production of hydrogen is by water elec... Hydrogen,a renewable and outstanding energy carrier with zero carbon dioxide emission,is regarded as the best alternative to fossil fuels.The most preferred route to large-scale production of hydrogen is by water electrolysis from the intermittent sources(e.g.,wind,solar,hydro,and tidal energy).However,the efficiency of water electrolysis is very much dependent on the activity of electrocatalysts.Thus,designing high-effective,stable,and cheap materials for hydrogen evolution reaction(HER)could have a substantial impact on renewable energy technologies.Recently,single-atom catalysts(SACs)have emerged as a new frontier in catalysis science,because SACs have maximum atom-utilization efficiency and excellent catalytic reaction activity.Various synthesis methods and analytical techniques have been adopted to prepare and characterize these SACs.In this review,we discuss recent progress on SACs synthesis,characterization methods,and their catalytic applications.Particularly,we highlight their unique electrochemical characteristics toward HER.Finally,the current key challenges in SACs for HER are pointed out and some potential directions are proposed as well. 展开更多
关键词 Single-atom catalysts NANOMATERIALS ELECTROCATALYST hydrogen evolution reaction Electrochemical energy conversion
下载PDF
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni 被引量:6
20
作者 Feifei Sun Yue An +3 位作者 Lecheng Lei Fuying Wu Jingke Zhu Xingwang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期219-224,共6页
Hydrogenation of carbazole and N-ethylcarbazole over Raney-Ni catalyst were realized in the temperature range of 393-503 K. 4[H] adduct dominated the hydrogenation products and the formation of 2[H] adduct was the rat... Hydrogenation of carbazole and N-ethylcarbazole over Raney-Ni catalyst were realized in the temperature range of 393-503 K. 4[H] adduct dominated the hydrogenation products and the formation of 2[H] adduct was the rate-limiting step during the period, in which the conversion of carbazole was less than 40%. The hydrogenation process followed pseudo-first-order kinetics and the hydrogenation activation energies of carbazole and N-ethylcarbazole were 90 kJ/mol and 115 kJ/mol, respectively. The reaction starting position as well as the pathway of the hydrogenation of (N-ethyl)carbazole were investigated by comparing the kinetic characteristics of hydrogen uptake of carbazole and N- ethylcarbazole. The results showed that the reaction was a stepwise hydrogenation process and the first H_2 was added to the C1 = C10 double bond in the hydrogenation. 展开更多
关键词 (N-ethyl)carbazole hydrogen storage Raney-Ni catalyst reaction kinetics first reaction position
下载PDF
上一页 1 2 167 下一页 到第
使用帮助 返回顶部