MgO,CeO2 and MgO-CeO2 with different mole ratio of Mg:Ce were prepared by solid-phase burning method.Catalysts Ni/MgO,Ni/CeO2 and Ni/MgO-CeO2 were prepared by impregnation method.The catalytic properties were evaluate...MgO,CeO2 and MgO-CeO2 with different mole ratio of Mg:Ce were prepared by solid-phase burning method.Catalysts Ni/MgO,Ni/CeO2 and Ni/MgO-CeO2 were prepared by impregnation method.The catalytic properties were evaluated in ethanol steam reforming(ESR) reaction.Specific surface areas of the supports were measured by nitrogen adsorption-desorption at 77 K,and the catalysts were characterized with X-ray diffraction(XRD),temperature programmed reduction(TPR) and thermogravimetric(TG).The results showed that well...展开更多
Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ...Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.展开更多
Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on Ce...Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on CeO_(2)and Tb-doped CeO_(2)were prepared by a precipitation method.The physical structure and chemical properties of the as-prepared catalysts were characterized by powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,Raman spectroscopy,H_(2)temperature programmed reduction,and X-ray photoelectron spectroscopy.The results show that Tb-doped CeO_(2)supported Pt possesses abundant surface oxygen vacancies,good inhibition of ceria sintering,and strong metal-support interaction compared with CeO_(2)supported Pt.The catalytic performance of hydrogen production via steam reforming of long-chain hydrocarbon fuels(n-dodecane)was tested.Compared with 2Pt/CeO_(2),2Pt/Ce_(0.9)Tb_(0.1)O_(2),and 2Pt/Ce_(0.5)Tb_(0.5)O_(2),the 2Pt/Ce_(0.7)Tb_(0.3)O_(2)has higher activity and stability for hydrogen production,on which the conversion of n-dodecane was maintained at about 53.2%after 600 min reaction under 700℃at liquid space velocity of 9 ml·g^(-1)·h^(-1).2Pt/CeO_(2)rapidly deactivated,the conversion of n-dodecane was reduced to only 41.6%after 600 min.展开更多
La2O2CO3 was prepared by calcination of La2 (CO3)3 in the air. Catalysts Ni-Fe/La2O2CO3 with different mole ratios of Ni to Fe, Ni/La2O2CO3 and Fe/La2O2CO3 were prepared by impregnation method. The catalytic propert...La2O2CO3 was prepared by calcination of La2 (CO3)3 in the air. Catalysts Ni-Fe/La2O2CO3 with different mole ratios of Ni to Fe, Ni/La2O2CO3 and Fe/La2O2CO3 were prepared by impregnation method. The catalytic properties were evaluated on steam reforming of ethanol (SRE) from 300 to 700 ℃ under atmospheric pressure and the samples were characterized by Brunauer-Emmett-Teller method (BET), X-ray diffraction (XRD) and temperature programmed reduction (TPR). The results showed that Ni-Fe bimetallic catalysts exhibited higher activities than single metallic catalysts, which was attributed to the co-existence of well dispersed Ni, Fe and LaFeyNi1-yO3. It was found that the catalyst Ni-Fe/La2O2CO3 containing 10 wt.% Ni and 3 wt.%-5 wt.% Fe showed the best performance, the conversion of ethanol was 100%, the selectivity of H2 was higher than 90%, and the selectivity of CO was lower than 1.5% at 400 ℃.展开更多
CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductive...CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol.展开更多
Y2O3-Al2O3 with different mole ratios of Y:Al were prepared by co-precipitation method. Catalysts Ni/Y2O3, Ni/Al2O3 and Ni/ Y2O3-Al2O3 were prepared by impregnation method. The result of BET showed that Al2O3 with re...Y2O3-Al2O3 with different mole ratios of Y:Al were prepared by co-precipitation method. Catalysts Ni/Y2O3, Ni/Al2O3 and Ni/ Y2O3-Al2O3 were prepared by impregnation method. The result of BET showed that Al2O3 with relative high surface area was in favor of Ni distribution, whilst the TPR test demonstrated that composite support had appropriate synergistic effect between active constituent and sup-port, and NiO could be reduced more easily than loaded on the single support. H2-TPD test indicated that the catalyst NYA11 had lots of ac-tivity sites where H could be desorbed easily, which led to hydrogen-rich production over the catalyst. Composite support catalysts exhibited high activity for ethanol steam reforming (SRE), and the supported catalyst with composite of 1:1 mole ratio of Y:Al exhibited the optimum catalytic properties for SRE. Ethanol could be completely converted over catalyst NYA11 even at 450 °C, and there had no inactivation after 60 h continuous reaction, hydrogen yield appeared maximum 35.9% at 400 ℃, and tended to increase with increasing H2O/EtOH molar ratio and feed flow rate.展开更多
Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XR...Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XRD,TEM,SEM,and XPS,respectively.For comparison,cobalt catalyst supported on SiO_(2)(Co/SiO_(2))was also investigated.XPS studies and DFT calculations show that the cobalt species in Co/Si_(3)N_(4) have lower valence state than those in Co/SiO_(2).The catalytic ESR reactions demonstrate that Co/Si_(3)N_(4) exhibits distinctly higher catalytic activity and hydrogen selectivity than Si_(3)N_(4) support and Co/SiO_(2) catalyst with the identical cobalt loading,indicative of the favorable effect of Si_(3)N_(4) support on the catalytic performance of supported cobalt catalyst.Durability tests and TG-DSC studies show that Co/Si_(3)N_(4) catalyst exhibits better stability and resistance to coke during the same catalytic experiment period.展开更多
In this study, the production of synthesis gases has been purposed under between 250<sup>o</sup>C - 700<sup>o</sup>C and 1 - 2 bars pressures. The research was conducted over a commercial BASF ...In this study, the production of synthesis gases has been purposed under between 250<sup>o</sup>C - 700<sup>o</sup>C and 1 - 2 bars pressures. The research was conducted over a commercial BASF catalyst and a laboratory prepared catalyst. The catalyst has a content of different substances including basically NiO/Al<sub>2</sub>O<sub>3</sub> and some additionals (Ca, Mg, Cr, Si). The experimental measurements were carried out within a recently developed experimental equipment which can be operated up to 1200<sup>o</sup> and 1 to 3 bars pressures. The study was conducted over a commercial BASF catalyst and a laboratory prepared catalyst under different ethanol/water ratios, temperatures, and catalyst loads. Under the condition when ethanol/water ratios were decreased from 1/2 to 1/10, it was observed that hydrogen ratios increased in exit gas composition of the reactor. With increments in catalyst loads from 1 to 5 grammes, hydrogen ratios in exit gas composition gradually increased. Reaction of ethanol-steam reforming started nearly at 300<sup>o</sup>C, and when temperature increments continued further up to 700<sup>o</sup>C, hydrogen yields in exit gas compositions of the reactor increased significantly to a range of 70% - 80%. In the case of using commercial BASF catalyst, hydrogen ratios in exit gas composition were found slightly higher than laboratory prepared catalyst. According to our observations, life time of laboratory prepared catalyst was found higher than the commercial BASF catalyst. In this study which kinetic measurements were applied, some kinetic parameters of ethanol-steam reaction were calculated. The mean activation energy of ethanol consumptions at 573<sup>o</sup>K - 973<sup>o</sup>K was found as 26.87 kJ/mol, approximately. All kinetic measurements were analyzed with a first order reaction rate model. In this study, some diffusion limitations existed, however, overall reaction was chemically controlled.展开更多
Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocataly...Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocatalyst that demonstrates both photoelectronic and photothermal conversion capabilities have drawn much attention recently.Here,we propose a novel synergistic full-spectrum photo-thermo-catalysis technique for high-efficient H_(2) production by solar-driven methanol steam reforming(MSR),along with the Pt-Cu Oxphoto-thermo-catalyst featuring Pt-Cu/Cu_(2)O/CuO heterojunctions by Pt-mediated in-situ photoreduction of Cu O.The results show that the H_(2) production performance rises superlinearly with increasing light intensity.The optimal H_(2) production rate of 1.6 mol g^(-1) h^(-1) with the corresponding solar-to-hydrogen conversion efficiency of 7%and the CO selectivity of 5%is achieved under 15×sun full-spectrum irradiance(1×sun=1 k W m^(-2))at 180°C,which is much more efficient than the previously-reported Cu-based thermo-catalysts for MSR normally operating at 250~350°C.These attractive performances result from the optimized reaction kinetics in terms of intensified intermediate adsorption and accelerated carrier transfer by long-wave photothermal effect,and reduced activation barrier by short-wave photoelectronic effect,due to the broadened full-spectrum absorbability of catalyst.This work has brought us into the innovative technology of full-spectrum synergistic photothermo-catalysis,which is envisioned to expand the application fields of high-efficient solar fuel production.展开更多
Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that...Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity, CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity, and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C-C bond rupture and water gas shift reactions;and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.展开更多
Hydrogen was produced over noble metal(Ir, Ru, Rh, Pd) catalysts supported on various oxides, including γ-Al2O3, CeO2, ZrO2 and La2O3, via the autothermal reforming reaction of ethanol (ATRE) and oxidative reform...Hydrogen was produced over noble metal(Ir, Ru, Rh, Pd) catalysts supported on various oxides, including γ-Al2O3, CeO2, ZrO2 and La2O3, via the autothermal reforming reaction of ethanol (ATRE) and oxidative reforming reaction of ethanol (OSRE). The conversion of ethanol and selectivites for hydrogen and byproducts such as methane, ethylene and acetaldehyde were studied. It was found that lanthana alone possessed considerable activity for the ATRE reaction, which could be used as a functional support for ATRE catalysts. It was demonstrated that Ir/La2O3 prevented the formation of methane, and Rh/La2O3 encumbered the production of ethylene and acetaldehyde. ATRE reaction was carried out over La2O3-supported catalysts (Ir/La2O3) with good stability on stream, high conversion, and excellent hydrogen selectivity approaching thermodynamic limit under autothermal condition. Typically, 3.4H2 molecules can be extracted from a pair of ethanol and water molecules over Ir(5wt%)/La2O3. The results presented in this paper indicate that Ir/La2O3 can be used as a promising catalyst for hydrogen production via ATRE reaction from renewable ethanol.展开更多
Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether(DME).A systemic procedure was employed to determine the suitable experimental conditions.It was found tha...Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether(DME).A systemic procedure was employed to determine the suitable experimental conditions.It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air.The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield,but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to76 ml·min 1.Larger electrode gap and higher discharge voltage were advantageous.Electrode shape had an important effect on the conversion of DME and production of H2.Among the five electrodes,electrode 2#with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option,which enhanced obviously the conversion of DME.展开更多
The renewable hydrogen generation through ethanol steam reforming is one of the anticipated areas for sustainable hydrogen generation. To elucidate the role of Ni and Co with ZSM-5 support, catalysts were prepared by ...The renewable hydrogen generation through ethanol steam reforming is one of the anticipated areas for sustainable hydrogen generation. To elucidate the role of Ni and Co with ZSM-5 support, catalysts were prepared by wet impregnation method and ethanol steam reforming(ESR) was performed. The catalysts were characterized by HR-XRD, ATR–FTIR, HR-SEM, TEM with SAED, EDAX, surface area analyzer and TPR. It had shown complete ethanol conversion at 773 K, but the selectivity in hydrogen generation was found higher for 10% Ni/ZSM-5 catalyst as compared to 10% Co/ZSM-5. The 10% Ni/ZSM-5 catalyst has about 72% hydrogen selectivity at temperature 873 K. It indicates that Ni is a more sustainable catalyst as compared to Co with ZSM-5 support for ESR. The C_2H_4 was found major undesirable products up to 823 K temperature. Nevertheless, the 10% Ni/ZSM-5 catalyst had shown its stability for high temperature(873 K) ESR performance.展开更多
NiO-Ce0.5Zr0.5O2 catalysts were prepared by citrate method and used for hydrogen production from steam reforming of ethanol (SRE). The effect of nickel content and space velocity on the catalytic performance was inv...NiO-Ce0.5Zr0.5O2 catalysts were prepared by citrate method and used for hydrogen production from steam reforming of ethanol (SRE). The effect of nickel content and space velocity on the catalytic performance was investigated. The prepared catalysts were characterized with XRD and thermal analysis techniques. 20%NiO-Ce0.5Zr0.5O2catalyst was very active and selective for hydrogen production via SRE, in which ethanol conversion of 100% could be obtained with feed component of 20% (H2O+EtOH) and 80% N2, water/ethanol of 3/1 in molar ratio at 350 ℃. Also, the catalyst showed good stability for anti-sintering and carbon-resistance. The XRD illuminated that both NiO and Ce0.5Zr0.5O2 crystal sizes were very small in NiO-Ce0.5Zr0.5O2 catalyst, and Ce0.5Zr0.5O2 solid solution was formed.展开更多
The aim of this work is to boost the combined hydrogen and added-values compounds generation(acetaldehyde, acetic acid and ethyl acetate) through ethanol electrochemical reforming using bimetallic anodes. In particula...The aim of this work is to boost the combined hydrogen and added-values compounds generation(acetaldehyde, acetic acid and ethyl acetate) through ethanol electrochemical reforming using bimetallic anodes. In particular, the influence of the secondary metal on the electrochemical performance as well as on the product distribution was studied. For that purpose, Pt X/C electrocatalysts(where X corresponds to Cu, Co, Ni and Ru) were synthesized by the modified polyol method and tested in both half-cell and proton exchange membrane(PEM) cell configurations. Characterization results showed that incorporation of Ni and Co into the Pt matrix enhances the morphological properties of the material, providing smaller crystallite sizes, higher active surface areas and hence, better dispersion when comparing to Ru and Cu-based electrocatalysts. Ethanol oxidation reaction(EOR) was evaluated by cyclic, linear voltammetry and chronopotentiometry assays. Pt Co/C and Pt Ni/C exhibited the highest electrocatalytic activity at high polarization levels, which translate into an improvement of more than 30%(up to 1050 m A cm^(-2)) in the hydrogen production and chemical yields. On the other hand, Pt Ru/C results more advantageous for a lower potential interval(<0.85 V) promoting the acetic acid production despite sacrificing ethanol conversion. Pt Cu/C presented the lowest results in both electrochemical performance and product distribution. Such differences in the electrochemical performance can be rationalized in terms of the synergistic effect between both metals(particle size distribution, grade of dispersion and hydrophilic behavior), which demonstrate that the incorporation of a different secondary metal plays an essential role in the EOR development.展开更多
Ethanol steam reforming has been studied in a fluidized bed (in order to ensure bed isothermicity) on commercial catalysts for methane reforming. The results allow analyzing the effect of temperature (in 300-700℃ ...Ethanol steam reforming has been studied in a fluidized bed (in order to ensure bed isothermicity) on commercial catalysts for methane reforming. The results allow analyzing the effect of temperature (in 300-700℃ range), and both metal and support nature on the reaction indices (ethanol conversion, yields and selectivities to H2 and byproducts (CO2, CO, CH4 and C2H4O)). Special attention has been paid to catalysts' stability by comparing the evolution of the reaction indices with time on stream at 500°C (minimum CO formation) and 700℃ (minimum deactivation by coke deposition). Although they provide a slightly lower H2 yield, the results evidence a good behaviour of Ni based catalysts, indicating that they are an interesting alternative of more expensive Rh based ones.展开更多
In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricat...In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricated by the low temperature solid-phase sintering method using metal fibers such as copper fibers and aluminum fibers which are obtained by the multi-tooth cutting method. The two-layer impregnation method was employed to coat Cu/Zn/Al/Zr catalyst on the PMFSF. The effect of fiber material, uniform porosity and gradient porosity on the performance of methano steam reforming microreactor was studied by varying the gas hourly space velocity(GHSV) and reaction temperature. Our results showed that the loading strength of porous copper fiber sintered felt(PCFSF) was better than porous aluminum fiber sintered felt(PAFSF). Under the same reaction conditions, the PCFSF showed higher methanol conversion and more H_2 output than PAFSF. Moreover, the gradient porosity(Type 5: 90%×80%×70%) of PMFSF used as the catalyst support in microreactor demonstrated a best reaction performance for hydrogen production.展开更多
Steam reforming (SR) of dimethyl ether (DME) was investigated for the production of hydrogen for fuel cells. The activity of a series of solid acids for DME hydrolysis was investigated. The solid acid catalysts we...Steam reforming (SR) of dimethyl ether (DME) was investigated for the production of hydrogen for fuel cells. The activity of a series of solid acids for DME hydrolysis was investigated. The solid acid catalysts were ZSM-5 [Si/A] = 25, 38 and 50: denoted Z(Si/Al)] and acidic alumina (γ-Al2O3) with an acid strength order that was Z(25)〉Z(38)〉Z(50)〉γ-Al2O3. Stronger acidity gave higher DME hydrolysis conversion. Physical mixtures containing a CuO-ZnO-Al2O3-ZrO2 catalyst and solid acid catalyst to couple DME hydrolysis and methanol SR were used to examine the acidity effects on DME SR. DME SR activity strongly depended on the activity for DME hydrolysis. Z(25) was the best solid acid catalyst for DME, SR and gave a DME conversion〉90% IT= 240℃,n(H20)/n(DME) = 3.5, space velocity = 1179 ml.(g cat)^-1.h^-1, and P= 0.1MPa]. The influences of the reaction temperature, space velocity and feed molar ratio were studied. Hydrogen production significantly depended on temperature and space velocity. A bifunctional catalyst of CuO-ZnO-Al2O3-ZrO2 catalyst and ZSM-5 gave a high H2 production rate and CO2 selectivity.展开更多
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti...Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.展开更多
Glycerol steam reforming(GSR)is one of the promising technologies that can realize renewable hydrogen production and efficient utilization of crude glycerol.To illuminate the functions of Ca content(3%,6%,9%,and 12%,b...Glycerol steam reforming(GSR)is one of the promising technologies that can realize renewable hydrogen production and efficient utilization of crude glycerol.To illuminate the functions of Ca content(3%,6%,9%,and 12%,by mass)and preparation method for Ni/ATP catalyst structure and its catalytic behaviors,the Ni-xCa/ATP(x=3%,6%,9%,and 12%,by mass)catalysts are prepared by co-impregnation(ci)and hydrothermal synthesis(hs)method and then tested in GSR.Characterization results of XRD,N_(2) adsorption–desorption,H_(2)-TPR,HRTEM,XPS,and NH_(3)/CO_(2)-TPD demonstrate that the combined effect between appropriate Ca additive(6%,by mass)and hs enhance catalyst reducibility,uniform distribution of Ca additive and nickel species over ATP,and adsorption for CO_(2).This attributes to hs method protects the ATP framework through suppressing the interaction of Ca with ATP and promotes the formation of NiCaOx interface sites.Therefore,Ni-6Ca/ATP-hs exhibits the highest conversion(86.77%)of glycerol to gas product and H_(2) yield(76.17%)and selectivity(58.56%)during GSR.Furthermore,XRD,HRTEM,TGDTG and Raman analyses confirm that Ni-6Ca/ATP-hs also reveals outstanding anti-sintering and coke resistance.In addition,the structural evolution process of Ni/ATP catalyst with Ca introduction and hs method is presented.Considering the high performance,simple preparation process and low cost,the as-prepared catalyst providing new opportunities for utilization of glycerol derived from biodiesel industry.展开更多
基金supported by the National Natural Science Foundation of China (20863006)the Natural Science Foundation of Jiangxi Province, China (0620042)Department of Education of Jiangxi Province (GJJ09078)
文摘MgO,CeO2 and MgO-CeO2 with different mole ratio of Mg:Ce were prepared by solid-phase burning method.Catalysts Ni/MgO,Ni/CeO2 and Ni/MgO-CeO2 were prepared by impregnation method.The catalytic properties were evaluated in ethanol steam reforming(ESR) reaction.Specific surface areas of the supports were measured by nitrogen adsorption-desorption at 77 K,and the catalysts were characterized with X-ray diffraction(XRD),temperature programmed reduction(TPR) and thermogravimetric(TG).The results showed that well...
基金funding from the European Union's Horizon 2020 Research and Innovation Program(872102)P.S.thanks the Science Achievement Scholarship of Thailand(SAST)for her research secondment at The University of Manchester.Y.J.thanks the National Natural Science Foundation of China(22378407)for funding.
文摘Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.
基金supported by the Key Research and Design Program of Qinhuangdao(202101A005)the Science and Technology Project of Hebei Education Department(QN2023094)+2 种基金the Cultivation Project for Basic Research and Innovation of Yanshan University(2021LGQN028)the Project for Research and Development of Metal Catalysts for Photo-thermal Decomposition of Waste Plastics to Prepare Value-added Chemicals(x2023322)the Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(22567616H).
文摘Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on CeO_(2)and Tb-doped CeO_(2)were prepared by a precipitation method.The physical structure and chemical properties of the as-prepared catalysts were characterized by powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,Raman spectroscopy,H_(2)temperature programmed reduction,and X-ray photoelectron spectroscopy.The results show that Tb-doped CeO_(2)supported Pt possesses abundant surface oxygen vacancies,good inhibition of ceria sintering,and strong metal-support interaction compared with CeO_(2)supported Pt.The catalytic performance of hydrogen production via steam reforming of long-chain hydrocarbon fuels(n-dodecane)was tested.Compared with 2Pt/CeO_(2),2Pt/Ce_(0.9)Tb_(0.1)O_(2),and 2Pt/Ce_(0.5)Tb_(0.5)O_(2),the 2Pt/Ce_(0.7)Tb_(0.3)O_(2)has higher activity and stability for hydrogen production,on which the conversion of n-dodecane was maintained at about 53.2%after 600 min reaction under 700℃at liquid space velocity of 9 ml·g^(-1)·h^(-1).2Pt/CeO_(2)rapidly deactivated,the conversion of n-dodecane was reduced to only 41.6%after 600 min.
基金Project supported by the National Natural Science Foundation of China (20863006)the Natural Science Foundation of Jiangxi Province (0620042)Department of Education of Jiangxi Province (GJJ09078)
文摘La2O2CO3 was prepared by calcination of La2 (CO3)3 in the air. Catalysts Ni-Fe/La2O2CO3 with different mole ratios of Ni to Fe, Ni/La2O2CO3 and Fe/La2O2CO3 were prepared by impregnation method. The catalytic properties were evaluated on steam reforming of ethanol (SRE) from 300 to 700 ℃ under atmospheric pressure and the samples were characterized by Brunauer-Emmett-Teller method (BET), X-ray diffraction (XRD) and temperature programmed reduction (TPR). The results showed that Ni-Fe bimetallic catalysts exhibited higher activities than single metallic catalysts, which was attributed to the co-existence of well dispersed Ni, Fe and LaFeyNi1-yO3. It was found that the catalyst Ni-Fe/La2O2CO3 containing 10 wt.% Ni and 3 wt.%-5 wt.% Fe showed the best performance, the conversion of ethanol was 100%, the selectivity of H2 was higher than 90%, and the selectivity of CO was lower than 1.5% at 400 ℃.
基金supported by the National Basic Research Program of China (2010CB732304)the National Natural Science Foundation of China (21177142 and 20973193)
文摘CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol.
基金Project supported by National Natural Science Foundation of China (20863006,21166018)Natural Science Foundation committee of Jiangxi Province,China (0620042)Department of Education of Jiangxi Province (GJJ09078)
文摘Y2O3-Al2O3 with different mole ratios of Y:Al were prepared by co-precipitation method. Catalysts Ni/Y2O3, Ni/Al2O3 and Ni/ Y2O3-Al2O3 were prepared by impregnation method. The result of BET showed that Al2O3 with relative high surface area was in favor of Ni distribution, whilst the TPR test demonstrated that composite support had appropriate synergistic effect between active constituent and sup-port, and NiO could be reduced more easily than loaded on the single support. H2-TPD test indicated that the catalyst NYA11 had lots of ac-tivity sites where H could be desorbed easily, which led to hydrogen-rich production over the catalyst. Composite support catalysts exhibited high activity for ethanol steam reforming (SRE), and the supported catalyst with composite of 1:1 mole ratio of Y:Al exhibited the optimum catalytic properties for SRE. Ethanol could be completely converted over catalyst NYA11 even at 450 °C, and there had no inactivation after 60 h continuous reaction, hydrogen yield appeared maximum 35.9% at 400 ℃, and tended to increase with increasing H2O/EtOH molar ratio and feed flow rate.
基金by the National Natural Science Foundation of China(Nos.21671154,U1732147)the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(WKDM202210)the State Key Laboratory of Refractories(SKLAR202009)。
文摘Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XRD,TEM,SEM,and XPS,respectively.For comparison,cobalt catalyst supported on SiO_(2)(Co/SiO_(2))was also investigated.XPS studies and DFT calculations show that the cobalt species in Co/Si_(3)N_(4) have lower valence state than those in Co/SiO_(2).The catalytic ESR reactions demonstrate that Co/Si_(3)N_(4) exhibits distinctly higher catalytic activity and hydrogen selectivity than Si_(3)N_(4) support and Co/SiO_(2) catalyst with the identical cobalt loading,indicative of the favorable effect of Si_(3)N_(4) support on the catalytic performance of supported cobalt catalyst.Durability tests and TG-DSC studies show that Co/Si_(3)N_(4) catalyst exhibits better stability and resistance to coke during the same catalytic experiment period.
文摘In this study, the production of synthesis gases has been purposed under between 250<sup>o</sup>C - 700<sup>o</sup>C and 1 - 2 bars pressures. The research was conducted over a commercial BASF catalyst and a laboratory prepared catalyst. The catalyst has a content of different substances including basically NiO/Al<sub>2</sub>O<sub>3</sub> and some additionals (Ca, Mg, Cr, Si). The experimental measurements were carried out within a recently developed experimental equipment which can be operated up to 1200<sup>o</sup> and 1 to 3 bars pressures. The study was conducted over a commercial BASF catalyst and a laboratory prepared catalyst under different ethanol/water ratios, temperatures, and catalyst loads. Under the condition when ethanol/water ratios were decreased from 1/2 to 1/10, it was observed that hydrogen ratios increased in exit gas composition of the reactor. With increments in catalyst loads from 1 to 5 grammes, hydrogen ratios in exit gas composition gradually increased. Reaction of ethanol-steam reforming started nearly at 300<sup>o</sup>C, and when temperature increments continued further up to 700<sup>o</sup>C, hydrogen yields in exit gas compositions of the reactor increased significantly to a range of 70% - 80%. In the case of using commercial BASF catalyst, hydrogen ratios in exit gas composition were found slightly higher than laboratory prepared catalyst. According to our observations, life time of laboratory prepared catalyst was found higher than the commercial BASF catalyst. In this study which kinetic measurements were applied, some kinetic parameters of ethanol-steam reaction were calculated. The mean activation energy of ethanol consumptions at 573<sup>o</sup>K - 973<sup>o</sup>K was found as 26.87 kJ/mol, approximately. All kinetic measurements were analyzed with a first order reaction rate model. In this study, some diffusion limitations existed, however, overall reaction was chemically controlled.
基金financially supported by the National Natural Science Foundation of China(52176202)the Foshan Xianhu-Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(41200101)。
文摘Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocatalyst that demonstrates both photoelectronic and photothermal conversion capabilities have drawn much attention recently.Here,we propose a novel synergistic full-spectrum photo-thermo-catalysis technique for high-efficient H_(2) production by solar-driven methanol steam reforming(MSR),along with the Pt-Cu Oxphoto-thermo-catalyst featuring Pt-Cu/Cu_(2)O/CuO heterojunctions by Pt-mediated in-situ photoreduction of Cu O.The results show that the H_(2) production performance rises superlinearly with increasing light intensity.The optimal H_(2) production rate of 1.6 mol g^(-1) h^(-1) with the corresponding solar-to-hydrogen conversion efficiency of 7%and the CO selectivity of 5%is achieved under 15×sun full-spectrum irradiance(1×sun=1 k W m^(-2))at 180°C,which is much more efficient than the previously-reported Cu-based thermo-catalysts for MSR normally operating at 250~350°C.These attractive performances result from the optimized reaction kinetics in terms of intensified intermediate adsorption and accelerated carrier transfer by long-wave photothermal effect,and reduced activation barrier by short-wave photoelectronic effect,due to the broadened full-spectrum absorbability of catalyst.This work has brought us into the innovative technology of full-spectrum synergistic photothermo-catalysis,which is envisioned to expand the application fields of high-efficient solar fuel production.
基金supported by Natural Science Foundation of China (Grant 21273193, 21473231 and 20973148)
文摘Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity, CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity, and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C-C bond rupture and water gas shift reactions;and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.
基金supported by the National Natural Science Foundation of China (No. 50675070)
文摘Hydrogen was produced over noble metal(Ir, Ru, Rh, Pd) catalysts supported on various oxides, including γ-Al2O3, CeO2, ZrO2 and La2O3, via the autothermal reforming reaction of ethanol (ATRE) and oxidative reforming reaction of ethanol (OSRE). The conversion of ethanol and selectivites for hydrogen and byproducts such as methane, ethylene and acetaldehyde were studied. It was found that lanthana alone possessed considerable activity for the ATRE reaction, which could be used as a functional support for ATRE catalysts. It was demonstrated that Ir/La2O3 prevented the formation of methane, and Rh/La2O3 encumbered the production of ethylene and acetaldehyde. ATRE reaction was carried out over La2O3-supported catalysts (Ir/La2O3) with good stability on stream, high conversion, and excellent hydrogen selectivity approaching thermodynamic limit under autothermal condition. Typically, 3.4H2 molecules can be extracted from a pair of ethanol and water molecules over Ir(5wt%)/La2O3. The results presented in this paper indicate that Ir/La2O3 can be used as a promising catalyst for hydrogen production via ATRE reaction from renewable ethanol.
基金Supported by the National Natural Science Foundation of China(21176175,20606023)
文摘Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether(DME).A systemic procedure was employed to determine the suitable experimental conditions.It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air.The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield,but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to76 ml·min 1.Larger electrode gap and higher discharge voltage were advantageous.Electrode shape had an important effect on the conversion of DME and production of H2.Among the five electrodes,electrode 2#with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option,which enhanced obviously the conversion of DME.
基金Institute of Technology (BHU) Varanasi and MHRD, Govt. of India for financial assistance (TA) to Mr Ashutosh Kumar
文摘The renewable hydrogen generation through ethanol steam reforming is one of the anticipated areas for sustainable hydrogen generation. To elucidate the role of Ni and Co with ZSM-5 support, catalysts were prepared by wet impregnation method and ethanol steam reforming(ESR) was performed. The catalysts were characterized by HR-XRD, ATR–FTIR, HR-SEM, TEM with SAED, EDAX, surface area analyzer and TPR. It had shown complete ethanol conversion at 773 K, but the selectivity in hydrogen generation was found higher for 10% Ni/ZSM-5 catalyst as compared to 10% Co/ZSM-5. The 10% Ni/ZSM-5 catalyst has about 72% hydrogen selectivity at temperature 873 K. It indicates that Ni is a more sustainable catalyst as compared to Co with ZSM-5 support for ESR. The C_2H_4 was found major undesirable products up to 823 K temperature. Nevertheless, the 10% Ni/ZSM-5 catalyst had shown its stability for high temperature(873 K) ESR performance.
基金supported by the Ministry of Science and Technology of China (863 Program, 2006AA05Z115)
文摘NiO-Ce0.5Zr0.5O2 catalysts were prepared by citrate method and used for hydrogen production from steam reforming of ethanol (SRE). The effect of nickel content and space velocity on the catalytic performance was investigated. The prepared catalysts were characterized with XRD and thermal analysis techniques. 20%NiO-Ce0.5Zr0.5O2catalyst was very active and selective for hydrogen production via SRE, in which ethanol conversion of 100% could be obtained with feed component of 20% (H2O+EtOH) and 80% N2, water/ethanol of 3/1 in molar ratio at 350 ℃. Also, the catalyst showed good stability for anti-sintering and carbon-resistance. The XRD illuminated that both NiO and Ce0.5Zr0.5O2 crystal sizes were very small in NiO-Ce0.5Zr0.5O2 catalyst, and Ce0.5Zr0.5O2 solid solution was formed.
基金We gratefully acknowledge the Spanish Ministry of Science and Innovation(project PID2019-107499RB-100 and FPI grant BES-2017-081181)for the financial support.
文摘The aim of this work is to boost the combined hydrogen and added-values compounds generation(acetaldehyde, acetic acid and ethyl acetate) through ethanol electrochemical reforming using bimetallic anodes. In particular, the influence of the secondary metal on the electrochemical performance as well as on the product distribution was studied. For that purpose, Pt X/C electrocatalysts(where X corresponds to Cu, Co, Ni and Ru) were synthesized by the modified polyol method and tested in both half-cell and proton exchange membrane(PEM) cell configurations. Characterization results showed that incorporation of Ni and Co into the Pt matrix enhances the morphological properties of the material, providing smaller crystallite sizes, higher active surface areas and hence, better dispersion when comparing to Ru and Cu-based electrocatalysts. Ethanol oxidation reaction(EOR) was evaluated by cyclic, linear voltammetry and chronopotentiometry assays. Pt Co/C and Pt Ni/C exhibited the highest electrocatalytic activity at high polarization levels, which translate into an improvement of more than 30%(up to 1050 m A cm^(-2)) in the hydrogen production and chemical yields. On the other hand, Pt Ru/C results more advantageous for a lower potential interval(<0.85 V) promoting the acetic acid production despite sacrificing ethanol conversion. Pt Cu/C presented the lowest results in both electrochemical performance and product distribution. Such differences in the electrochemical performance can be rationalized in terms of the synergistic effect between both metals(particle size distribution, grade of dispersion and hydrophilic behavior), which demonstrate that the incorporation of a different secondary metal plays an essential role in the EOR development.
基金supported by financial support of the Ministry of Science and Technology of the Spanish Government(Projects CTQ2009-13428 and CTQ2012-35263)the University of the Basque Country(UFI 11/39)the Basque Government(Project IT748-13)
文摘Ethanol steam reforming has been studied in a fluidized bed (in order to ensure bed isothermicity) on commercial catalysts for methane reforming. The results allow analyzing the effect of temperature (in 300-700℃ range), and both metal and support nature on the reaction indices (ethanol conversion, yields and selectivities to H2 and byproducts (CO2, CO, CH4 and C2H4O)). Special attention has been paid to catalysts' stability by comparing the evolution of the reaction indices with time on stream at 500°C (minimum CO formation) and 700℃ (minimum deactivation by coke deposition). Although they provide a slightly lower H2 yield, the results evidence a good behaviour of Ni based catalysts, indicating that they are an interesting alternative of more expensive Rh based ones.
基金supported by the Natural Science Fundation of Fujian Province of China (No. 2017J06015)the Foundation of Public Welfare Research and Capacity Building in Guangdong Province (No. 2014A010106002)+2 种基金the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC) under Project No. 33600000-15-ZC06070004the supports from the Fundamental Research Funds for Central Universities, the Xiamen University (No. 20720160079)the Collaborative Innovation Center of HighEnd Equipment Manufacturing in Fujian are also acknowledged
文摘In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricated by the low temperature solid-phase sintering method using metal fibers such as copper fibers and aluminum fibers which are obtained by the multi-tooth cutting method. The two-layer impregnation method was employed to coat Cu/Zn/Al/Zr catalyst on the PMFSF. The effect of fiber material, uniform porosity and gradient porosity on the performance of methano steam reforming microreactor was studied by varying the gas hourly space velocity(GHSV) and reaction temperature. Our results showed that the loading strength of porous copper fiber sintered felt(PCFSF) was better than porous aluminum fiber sintered felt(PAFSF). Under the same reaction conditions, the PCFSF showed higher methanol conversion and more H_2 output than PAFSF. Moreover, the gradient porosity(Type 5: 90%×80%×70%) of PMFSF used as the catalyst support in microreactor demonstrated a best reaction performance for hydrogen production.
基金Supported by the Ministry of Science and Technology (G1999022408) and the National Natural Science Foundation of China (20773075).
文摘Steam reforming (SR) of dimethyl ether (DME) was investigated for the production of hydrogen for fuel cells. The activity of a series of solid acids for DME hydrolysis was investigated. The solid acid catalysts were ZSM-5 [Si/A] = 25, 38 and 50: denoted Z(Si/Al)] and acidic alumina (γ-Al2O3) with an acid strength order that was Z(25)〉Z(38)〉Z(50)〉γ-Al2O3. Stronger acidity gave higher DME hydrolysis conversion. Physical mixtures containing a CuO-ZnO-Al2O3-ZrO2 catalyst and solid acid catalyst to couple DME hydrolysis and methanol SR were used to examine the acidity effects on DME SR. DME SR activity strongly depended on the activity for DME hydrolysis. Z(25) was the best solid acid catalyst for DME, SR and gave a DME conversion〉90% IT= 240℃,n(H20)/n(DME) = 3.5, space velocity = 1179 ml.(g cat)^-1.h^-1, and P= 0.1MPa]. The influences of the reaction temperature, space velocity and feed molar ratio were studied. Hydrogen production significantly depended on temperature and space velocity. A bifunctional catalyst of CuO-ZnO-Al2O3-ZrO2 catalyst and ZSM-5 gave a high H2 production rate and CO2 selectivity.
基金supported by the National Natural Science Foundation of China(No.21176137) and Petro China
文摘Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.
基金the financial assistance from the National Natural Science Foundation of China (51906001 and 51876001)University Natural Science Research Project of Anhui Province (KJ2020ZD31)+1 种基金Key Research and Development Projects of Anhui Province (202004a06020053)Doctoral Fund project of Anhui University of Science and Technology
文摘Glycerol steam reforming(GSR)is one of the promising technologies that can realize renewable hydrogen production and efficient utilization of crude glycerol.To illuminate the functions of Ca content(3%,6%,9%,and 12%,by mass)and preparation method for Ni/ATP catalyst structure and its catalytic behaviors,the Ni-xCa/ATP(x=3%,6%,9%,and 12%,by mass)catalysts are prepared by co-impregnation(ci)and hydrothermal synthesis(hs)method and then tested in GSR.Characterization results of XRD,N_(2) adsorption–desorption,H_(2)-TPR,HRTEM,XPS,and NH_(3)/CO_(2)-TPD demonstrate that the combined effect between appropriate Ca additive(6%,by mass)and hs enhance catalyst reducibility,uniform distribution of Ca additive and nickel species over ATP,and adsorption for CO_(2).This attributes to hs method protects the ATP framework through suppressing the interaction of Ca with ATP and promotes the formation of NiCaOx interface sites.Therefore,Ni-6Ca/ATP-hs exhibits the highest conversion(86.77%)of glycerol to gas product and H_(2) yield(76.17%)and selectivity(58.56%)during GSR.Furthermore,XRD,HRTEM,TGDTG and Raman analyses confirm that Ni-6Ca/ATP-hs also reveals outstanding anti-sintering and coke resistance.In addition,the structural evolution process of Ni/ATP catalyst with Ca introduction and hs method is presented.Considering the high performance,simple preparation process and low cost,the as-prepared catalyst providing new opportunities for utilization of glycerol derived from biodiesel industry.