The present study analyzed changes in the biochemical metabolites N-acetyl aspartate, choline, and creatine in a simple concussion rabbit model following quiet rest, hyperbaric oxygen therapy, or interference stimulat...The present study analyzed changes in the biochemical metabolites N-acetyl aspartate, choline, and creatine in a simple concussion rabbit model following quiet rest, hyperbaric oxygen therapy, or interference stimulation through the use of hydrogen proton magnetic resonance spectroscopy detection. Experimental findings showed that brain N-acetyl aspartate and choline peak values significantly decreased, while creatine peak values significantly increased following simple concussion. Following treatments, N-acetyl aspartate and choline peaks returned to normal levels in the quiet rest and hyperbaric oxygen therapy groups, but no changes were observed in the interference stimulation group. Results demonstrated abnormal changes in the brain biochemical metabolism environment following simple concussion. Quiet rest was shown to play an important role in restoration of biochemical metabolism following simple concussion.展开更多
The conversion between anamorphoses of the dihydrated glycine complex was studied by means of B3LYP/6-31++G^**. It was found that proton transfer was accompanied by hydrogen bond transfer in the process of convers...The conversion between anamorphoses of the dihydrated glycine complex was studied by means of B3LYP/6-31++G^**. It was found that proton transfer was accompanied by hydrogen bond transfer in the process of conversion between different kinds of anamorphoses. With proton transfer, the electrostatic action was notably increased and the hydrogen-bonding action was evidently strengthened when the dihydrated neutral glycine complex converts into dihydrated zwitterionic glycine complex. The activation energy required for hydrogen bond transfer between dihydrated neutral glycine complexes is very low (6.32 kJ·mol^-1); however, the hydrogen bond transfer between dihydrated zwitterionic glycine complexes is rather difficult with the required activation energy of 13.52 kJ·mol^-1 due to the relatively strong electrostatic action. The activation energy required by proton transfer is at least 27.33 kJ·mol^-1, higher than that needed for hydrogen bond transfer. The activation energy for either hydrogen bond transfer or proton transfer is in the bond-energy scope of medium-strong hydrogen bond, so the four kinds of anamorphoses of the dihydrated glycine complex could convert mutually.展开更多
A γ - type of layered zirconium hydrogen phosphate, Zr(HPO 4) 2·2H 2O( γ ZrP), was synthesized under hydrothermal conditions and characterized by powder X ray diffraction and thermogravimetric analysis....A γ - type of layered zirconium hydrogen phosphate, Zr(HPO 4) 2·2H 2O( γ ZrP), was synthesized under hydrothermal conditions and characterized by powder X ray diffraction and thermogravimetric analysis. The temperature dependence of the proton conductivity in γ ZrP was investigated in a temperature range of 23 ̄413 ℃ by ac impedance spectroscopy. The variation of the conductivity with water loss and phase transitions was observed. The best proton conductivity in γ ZrP is 6×10 -4 S·cm -1 at 60 ℃. The proton conductivities in the dehydrated sample are  ̄10 -5 at 150 ℃ and  ̄10 -4 S·cm -1 at 350 ℃, respectively. The conductivities as a function of humidity in the temperature range of 120 ̄200 ℃ were measured.展开更多
We study and calculate the mobility and conductivity of proton transfer and influence of temperature on it by pang’s dynamic model in hydrogen bonded systems, which coincide with experiments. We further study the mec...We study and calculate the mobility and conductivity of proton transfer and influence of temperature on it by pang’s dynamic model in hydrogen bonded systems, which coincide with experiments. We further study the mechanism of magnetization of ciguid water in the basis of this model.展开更多
The inelastic collision of protons with sodium atoms are treated for the first time within the framework of the coupledstatic and frozen core approximations. The method is used for calculating partial and total cross-...The inelastic collision of protons with sodium atoms are treated for the first time within the framework of the coupledstatic and frozen core approximations. The method is used for calculating partial and total cross-sections with the assumption that only two channels(elastic and hydrogen formation in 2s state) are open. In each case, the calculations are carried out for seven values of the total angular momentum l(0≤ l≤ 6). The target is described using the Clementi Roetti wave functions within the framework of the one valence electron model. We use Lipmann–Swinger equation to solve the derived equations of the problem, then apply an iterative numerical method to obtain the code of computer to calculate iterative partial cross-sections. This can be done through calculating the reactance matrix at different values of considered energies to obtain the transition matrix that gives partial and total cross sections. The present results for total hydrogen(2s state)formation cross sections are in agreement with results of other available ones in wide range of incident energy.展开更多
Protonic ceramic electrolysis cells(PCECs),which permit high-temperature electrolysis of water,exhibit various advantages over conventional solid oxide electrolysis cells(SOECs),including cost-effectiveness and the po...Protonic ceramic electrolysis cells(PCECs),which permit high-temperature electrolysis of water,exhibit various advantages over conventional solid oxide electrolysis cells(SOECs),including cost-effectiveness and the potential to operate at low-/intermediate-temperature ranges with high performance and efficiency.Although many efforts have been made in recent years to improve the electrochemical characteristics of PCECs,certain challenges involved in scaling them up remain unresolved.In the present work,we present a twin approach of combining the tape-calendering method with all-Ni-based functional electrodes with the aim of fabricating a tubular-designed PCEC having an enlarged electrode area(4.6 cm^2).This cell,based on a 25μm-thick BaCe0.5Zr0.3Dy0.2O3-δ proton-conducting electrolyte,a nickelbased cermet and a Pr1.95Ba0.05NiO4+δ oxygen electrode,demonstrates a high hydrogen production rate(19 m L min^-1 at 600℃),which surpasses the majority of results reported for traditional button-or planar-type PCECs.These findings increase the scope for scaling up solid oxide electrochemical cells and maintaining their operability at reducing temperatures.展开更多
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa...The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 × 10^16W/cm^2 laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.展开更多
A series of aluminium-containing α-type hydrated zirconium hydrogen phosphates,Zr_(1-x)Alx (H_(1+x/2)PO_4 )_2 with x=0-0.06,were hydrothermally synthesized and characterizedby means of X-ray diffraction,differential ...A series of aluminium-containing α-type hydrated zirconium hydrogen phosphates,Zr_(1-x)Alx (H_(1+x/2)PO_4 )_2 with x=0-0.06,were hydrothermally synthesized and characterizedby means of X-ray diffraction,differential thermal analysis and thermogravimetric analysis.The proton conductivity,1.2×10 ̄(-4) S·cm ̄(-1)at 180℃ was found in Zr_(0.98)Al_(0.02)(H_(1.01)PO_4)_2·H_2O.Humidity-sensing measurements were carried out at 120℃ and 140℃ respectively.Even a limited substitution of Al for Zr can enhance both proton conductivity and humidity sensitivity.展开更多
The electrical conduction properties of dense BaCe0.9Mn0.1O3-d (BCM10) membrane were investigated in the temperature range of 600-900oC. High ionic and electronic conductivities at elevated temperatures make BCM10 a ...The electrical conduction properties of dense BaCe0.9Mn0.1O3-d (BCM10) membrane were investigated in the temperature range of 600-900oC. High ionic and electronic conductivities at elevated temperatures make BCM10 a potential ceramic material for hydrogen separation. Hydrogen permeation through BCM10 membranes was studied using a high- temperature permeation cell. Little hydrogen could be detected at the sweep side. However, appreciable hydrogen can permeate through BCM10 membrane coated with porous platinum black, which shows that the process of hydrogen permeation through BCM10 membranes was controlled by the catalytic decomposition and recomposition of hydrogen on the surfaces of BCM10 membranes.展开更多
The reaction of Pr(Ⅲ) salt with 1,2,4,5-benzenetetracarboxylic acid(H4betc) and piperazine(pip) yielded a lanthanide metal-organic framework {[Pr(betc)(H2O)2](H2pip)0.5}n(1)under hydrothermal conditions...The reaction of Pr(Ⅲ) salt with 1,2,4,5-benzenetetracarboxylic acid(H4betc) and piperazine(pip) yielded a lanthanide metal-organic framework {[Pr(betc)(H2O)2](H2pip)0.5}n(1)under hydrothermal conditions. Compound 1 was characterized by single-crystal X-ray structural analysis, elemental analysis, IR, X-ray powder diffraction, and thermal gravimetric. Compound 1crystallizes in monoclinic, space group P21/n with a = 11.023(5), b = 11.109(5), c = 11.456(5) A, β = 110.065(5)°, V = 1317.7(9) A3, Mr = 471.14, Z = 4, F(000) = 920, Dc = 2.375 g/cm^3, μ(Mo Kα) = 3.761 mm-1, the final R = 0.0286 and w R = 0.0821(I 〉 2σ(I)). Compound 1 exhibits a 2D network with(4, 4) topology, and a 3D supramolecular framework formed by hydrogen-bonding interactions. The proton conductivity of compound 1 has been investigated at ~97% relative humidity and different temperature.展开更多
A heterometal-organic framework {[Pr2Ca(betc)2(H2O)7]·H2O}n(1) was prepared by the hydrothermal reaction of 1,2,4,5-benzenetetracarboxylic acid(H4betc) with Pr(NO3)3 and CaCO3, and further characterized...A heterometal-organic framework {[Pr2Ca(betc)2(H2O)7]·H2O}n(1) was prepared by the hydrothermal reaction of 1,2,4,5-benzenetetracarboxylic acid(H4betc) with Pr(NO3)3 and CaCO3, and further characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Complex 1 crystallizes in triclinic, space group P1 with a = 7.3668(12), b = 10.1726(14), c = 11.2264(15) A, a = 100.404(2), b = 106.113(3), g = 109.158(3)o, V = 728.48(19) A3, Mr = 966.26, Z = 1, F(000) = 470, Dc = 2.203 g/cm3, m(Mo Kα) = 3.585 mm-1, the final R = 0.0195 and w R = 0.0470(I 〉 2s(I)). Complex 1 is a 3D network with pcu topology with 1D porosity and rich hydrogen-bonding interactions. The proton conductivity of complex 1 was also studied under ~97% relative humidity and the different temperature conditions.展开更多
A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through ...A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through a facile solution casting approach. The simple, but effective monomer sulfonation was performed for SFMC to create compact and rigid hydrophobic backbone structures, while conventional random sulfonation was carried-out for SPEEK. Hydrophilic-hydrophobic-hydrophilic structure of SFMC enhances the compatibility with SPEEK and GO and allows for an unprecedented approach to alter me- chanical strength and proton conductivity of ternary hybrid membrane, as verified from universal test machine (UTM) curves and alternating current (AC) impedance plots. The impact of GO integration on the morphology and roughness of hybrid membrane was scrutinized using field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). Ternary hybrid showed uniform intercalation of GO nanosheets throughout the entire surface of membrane with an increased surface roughness of 8.91 nm. The constructed ternary hybrid membrane revealed excellent water absorption, ion exchange capacity and gas barrier properties, while retaining reasonable dimensional stability. The well-optimized ternary hybrid membrane containing 5 wt% GO revealed a maximum proton conductivity of 111.9 mS/cm, which is higher by a factor of two-fold with respect to that of bare SFMC membrane. The maximum PEMFC power density of 528.07mW/cm2 was yielded by ternary hybrid membrane at a load current density of 1321.1 mA/cm2 when operating the cell at 70 ℃ under 100% relative humidity (RH). In comparison, a maximum power density of only 182.06 mW/cm2 was exhibited by the bare SFMC membrane at a load current density of 455.56 mA/cm2 under same operating conditions.展开更多
Two types of disposable EMF hydrogen sensors for measurements ofsolute contents of liquid metals in situ in metal-refining processesand their general principles are introduced. The way to design newelectrochemical sen...Two types of disposable EMF hydrogen sensors for measurements ofsolute contents of liquid metals in situ in metal-refining processesand their general principles are introduced. The way to design newelectrochemical sensors and the direction to develop new protonicconductors as new electrochemical sensors are discussed. Thefeasibility of protonic conductors worked as hydrogen pump innon-ferrous metal refining processes is discussed as well.展开更多
The excited state intramolecular proton transfer of four derivatives(FM, BFM, BFBC, CCM) of 3-hydroxychromone is investigated.The geometries of different substituents are optimized to study the substituent effects on ...The excited state intramolecular proton transfer of four derivatives(FM, BFM, BFBC, CCM) of 3-hydroxychromone is investigated.The geometries of different substituents are optimized to study the substituent effects on proton transfer.The mechanism of hydrogen bond enhancement is qualitatively elucidated by comparing the infrared spectra, the reduced density gradient, and the frontier molecular orbitals.The calculated electronic spectra are consistent with the experimental results.To quantify the proton transfer, the potential energy curves(PECs) of the four derivatives in S0 and S1 states are scanned.It is concluded that the ability of proton transfer follows the order: FM > BFM > BFBC > CCM.展开更多
In this paper, we overview recent advances in high-precision structure calculations of the hydrogen molecular ions (H2+ and HD+), including nonrelativistic energy eigenvalues and relativistic and quantum electrody...In this paper, we overview recent advances in high-precision structure calculations of the hydrogen molecular ions (H2+ and HD+), including nonrelativistic energy eigenvalues and relativistic and quantum electrodynamic corrections. In combination with high-precision measurements, it is feasible to precisely determine a molecular-based value of the proton- to-electron mass ratio. An experimental scheme is presented for measuring the rovibrational transition frequency (v,L) : (0, 0) → (6,1) in HD+, which is currently underway at the Wuhan Institute of Physics and Mathematics.展开更多
Nickel boride alloys,Ni-B,were prepared using chemical reduction method by the reaction of metal chloride with sodium borohydride,and heat-treated at various temperatures. The structures of the as-prepared alloys were...Nickel boride alloys,Ni-B,were prepared using chemical reduction method by the reaction of metal chloride with sodium borohydride,and heat-treated at various temperatures. The structures of the as-prepared alloys were studied using X-ray diffractometry(XRD),scanning electronic microscopy(SEM) and nitrogen adsorption-desorption analysis. When being adopted as the catalysts for successive hydrogen generation from sodium borohydride solution,the Ni-B alloy treated at 90 ℃ achieves a maximum hydrogen generation rate of 15.4 L/(min·g),and an average hydrogen generation rate of 13.6 L/min,which can give successive hydrogen supply to a 2.2 kW PEMFC at a hydrogen utilization of 100%.展开更多
基金Military Medical Science and Technology Research During the Eleventh Five-Year Plan,No. 06MA96
文摘The present study analyzed changes in the biochemical metabolites N-acetyl aspartate, choline, and creatine in a simple concussion rabbit model following quiet rest, hyperbaric oxygen therapy, or interference stimulation through the use of hydrogen proton magnetic resonance spectroscopy detection. Experimental findings showed that brain N-acetyl aspartate and choline peak values significantly decreased, while creatine peak values significantly increased following simple concussion. Following treatments, N-acetyl aspartate and choline peaks returned to normal levels in the quiet rest and hyperbaric oxygen therapy groups, but no changes were observed in the interference stimulation group. Results demonstrated abnormal changes in the brain biochemical metabolism environment following simple concussion. Quiet rest was shown to play an important role in restoration of biochemical metabolism following simple concussion.
基金The project was supported by Tangshan Fundamental Research Fund (0612345A-10)
文摘The conversion between anamorphoses of the dihydrated glycine complex was studied by means of B3LYP/6-31++G^**. It was found that proton transfer was accompanied by hydrogen bond transfer in the process of conversion between different kinds of anamorphoses. With proton transfer, the electrostatic action was notably increased and the hydrogen-bonding action was evidently strengthened when the dihydrated neutral glycine complex converts into dihydrated zwitterionic glycine complex. The activation energy required for hydrogen bond transfer between dihydrated neutral glycine complexes is very low (6.32 kJ·mol^-1); however, the hydrogen bond transfer between dihydrated zwitterionic glycine complexes is rather difficult with the required activation energy of 13.52 kJ·mol^-1 due to the relatively strong electrostatic action. The activation energy required by proton transfer is at least 27.33 kJ·mol^-1, higher than that needed for hydrogen bond transfer. The activation energy for either hydrogen bond transfer or proton transfer is in the bond-energy scope of medium-strong hydrogen bond, so the four kinds of anamorphoses of the dihydrated glycine complex could convert mutually.
文摘A γ - type of layered zirconium hydrogen phosphate, Zr(HPO 4) 2·2H 2O( γ ZrP), was synthesized under hydrothermal conditions and characterized by powder X ray diffraction and thermogravimetric analysis. The temperature dependence of the proton conductivity in γ ZrP was investigated in a temperature range of 23 ̄413 ℃ by ac impedance spectroscopy. The variation of the conductivity with water loss and phase transitions was observed. The best proton conductivity in γ ZrP is 6×10 -4 S·cm -1 at 60 ℃. The proton conductivities in the dehydrated sample are  ̄10 -5 at 150 ℃ and  ̄10 -4 S·cm -1 at 350 ℃, respectively. The conductivities as a function of humidity in the temperature range of 120 ̄200 ℃ were measured.
文摘We study and calculate the mobility and conductivity of proton transfer and influence of temperature on it by pang’s dynamic model in hydrogen bonded systems, which coincide with experiments. We further study the mechanism of magnetization of ciguid water in the basis of this model.
文摘The inelastic collision of protons with sodium atoms are treated for the first time within the framework of the coupledstatic and frozen core approximations. The method is used for calculating partial and total cross-sections with the assumption that only two channels(elastic and hydrogen formation in 2s state) are open. In each case, the calculations are carried out for seven values of the total angular momentum l(0≤ l≤ 6). The target is described using the Clementi Roetti wave functions within the framework of the one valence electron model. We use Lipmann–Swinger equation to solve the derived equations of the problem, then apply an iterative numerical method to obtain the code of computer to calculate iterative partial cross-sections. This can be done through calculating the reactance matrix at different values of considered energies to obtain the transition matrix that gives partial and total cross sections. The present results for total hydrogen(2s state)formation cross sections are in agreement with results of other available ones in wide range of incident energy.
基金supported by the Russian Foundation for Basic Research (grant no. 18-38-20063)the Council of the President of the Russian Federation (scholarship no. СП-161.2018.1) for supporting the studies devoted to new MIEC materials
文摘Protonic ceramic electrolysis cells(PCECs),which permit high-temperature electrolysis of water,exhibit various advantages over conventional solid oxide electrolysis cells(SOECs),including cost-effectiveness and the potential to operate at low-/intermediate-temperature ranges with high performance and efficiency.Although many efforts have been made in recent years to improve the electrochemical characteristics of PCECs,certain challenges involved in scaling them up remain unresolved.In the present work,we present a twin approach of combining the tape-calendering method with all-Ni-based functional electrodes with the aim of fabricating a tubular-designed PCEC having an enlarged electrode area(4.6 cm^2).This cell,based on a 25μm-thick BaCe0.5Zr0.3Dy0.2O3-δ proton-conducting electrolyte,a nickelbased cermet and a Pr1.95Ba0.05NiO4+δ oxygen electrode,demonstrates a high hydrogen production rate(19 m L min^-1 at 600℃),which surpasses the majority of results reported for traditional button-or planar-type PCECs.These findings increase the scope for scaling up solid oxide electrochemical cells and maintaining their operability at reducing temperatures.
文摘The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 × 10^16W/cm^2 laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.
文摘A series of aluminium-containing α-type hydrated zirconium hydrogen phosphates,Zr_(1-x)Alx (H_(1+x/2)PO_4 )_2 with x=0-0.06,were hydrothermally synthesized and characterizedby means of X-ray diffraction,differential thermal analysis and thermogravimetric analysis.The proton conductivity,1.2×10 ̄(-4) S·cm ̄(-1)at 180℃ was found in Zr_(0.98)Al_(0.02)(H_(1.01)PO_4)_2·H_2O.Humidity-sensing measurements were carried out at 120℃ and 140℃ respectively.Even a limited substitution of Al for Zr can enhance both proton conductivity and humidity sensitivity.
基金The authors are grateful to Dr. Shane Roark (Eltron Research Inc.) and Mr. Jinwang Yan for beneficial discussion and suggestions. We would also like to acknowledge financial support from the Ministry of Science and Technology China (Grant No. G19990
文摘The electrical conduction properties of dense BaCe0.9Mn0.1O3-d (BCM10) membrane were investigated in the temperature range of 600-900oC. High ionic and electronic conductivities at elevated temperatures make BCM10 a potential ceramic material for hydrogen separation. Hydrogen permeation through BCM10 membranes was studied using a high- temperature permeation cell. Little hydrogen could be detected at the sweep side. However, appreciable hydrogen can permeate through BCM10 membrane coated with porous platinum black, which shows that the process of hydrogen permeation through BCM10 membranes was controlled by the catalytic decomposition and recomposition of hydrogen on the surfaces of BCM10 membranes.
基金supported by National Natural Science Foundation of China(21401147)Basic Research Program of Natural Science from Shaanxi Provincial Government(2015JQ2032)+2 种基金Scientific Research Program from Education Department of Shaanxi Provincial Government(2013JK0654)Opening Foundation from State Key Laboratory of Coordination Chemistry in Nanjing University(201219)the Program for Distinguished Young Scholars of Xi’an Polytechnic University(201403)
文摘The reaction of Pr(Ⅲ) salt with 1,2,4,5-benzenetetracarboxylic acid(H4betc) and piperazine(pip) yielded a lanthanide metal-organic framework {[Pr(betc)(H2O)2](H2pip)0.5}n(1)under hydrothermal conditions. Compound 1 was characterized by single-crystal X-ray structural analysis, elemental analysis, IR, X-ray powder diffraction, and thermal gravimetric. Compound 1crystallizes in monoclinic, space group P21/n with a = 11.023(5), b = 11.109(5), c = 11.456(5) A, β = 110.065(5)°, V = 1317.7(9) A3, Mr = 471.14, Z = 4, F(000) = 920, Dc = 2.375 g/cm^3, μ(Mo Kα) = 3.761 mm-1, the final R = 0.0286 and w R = 0.0821(I 〉 2σ(I)). Compound 1 exhibits a 2D network with(4, 4) topology, and a 3D supramolecular framework formed by hydrogen-bonding interactions. The proton conductivity of compound 1 has been investigated at ~97% relative humidity and different temperature.
基金supported by the National Natural Science Foundation of China(21401147 and 21301134)Basic Research Program of Natural Science from Shaanxi Provincial Government(2015JQ2032)+2 种基金Scientific Research Program from Education Department of Shaanxi Provincial Government(2013JK0654)Opening Foundation from State Key Laboratory of Coordination Chemistry in Nanjing University(201219)the Program for Distinguished Young Scholars of Xi’an Polytechnic University(201403)
文摘A heterometal-organic framework {[Pr2Ca(betc)2(H2O)7]·H2O}n(1) was prepared by the hydrothermal reaction of 1,2,4,5-benzenetetracarboxylic acid(H4betc) with Pr(NO3)3 and CaCO3, and further characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Complex 1 crystallizes in triclinic, space group P1 with a = 7.3668(12), b = 10.1726(14), c = 11.2264(15) A, a = 100.404(2), b = 106.113(3), g = 109.158(3)o, V = 728.48(19) A3, Mr = 966.26, Z = 1, F(000) = 470, Dc = 2.203 g/cm3, m(Mo Kα) = 3.585 mm-1, the final R = 0.0195 and w R = 0.0470(I 〉 2s(I)). Complex 1 is a 3D network with pcu topology with 1D porosity and rich hydrogen-bonding interactions. The proton conductivity of complex 1 was also studied under ~97% relative humidity and the different temperature conditions.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20164030201070)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and future Planning(NRF-2017R1A2B4005230)
文摘A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through a facile solution casting approach. The simple, but effective monomer sulfonation was performed for SFMC to create compact and rigid hydrophobic backbone structures, while conventional random sulfonation was carried-out for SPEEK. Hydrophilic-hydrophobic-hydrophilic structure of SFMC enhances the compatibility with SPEEK and GO and allows for an unprecedented approach to alter me- chanical strength and proton conductivity of ternary hybrid membrane, as verified from universal test machine (UTM) curves and alternating current (AC) impedance plots. The impact of GO integration on the morphology and roughness of hybrid membrane was scrutinized using field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). Ternary hybrid showed uniform intercalation of GO nanosheets throughout the entire surface of membrane with an increased surface roughness of 8.91 nm. The constructed ternary hybrid membrane revealed excellent water absorption, ion exchange capacity and gas barrier properties, while retaining reasonable dimensional stability. The well-optimized ternary hybrid membrane containing 5 wt% GO revealed a maximum proton conductivity of 111.9 mS/cm, which is higher by a factor of two-fold with respect to that of bare SFMC membrane. The maximum PEMFC power density of 528.07mW/cm2 was yielded by ternary hybrid membrane at a load current density of 1321.1 mA/cm2 when operating the cell at 70 ℃ under 100% relative humidity (RH). In comparison, a maximum power density of only 182.06 mW/cm2 was exhibited by the bare SFMC membrane at a load current density of 455.56 mA/cm2 under same operating conditions.
基金This project is financially Supported by the National Natural Science Foundation of China (No. 20101006)Postdoctoral Foundation of China, and Shanghai Postdoctoral Foundation
文摘Two types of disposable EMF hydrogen sensors for measurements ofsolute contents of liquid metals in situ in metal-refining processesand their general principles are introduced. The way to design newelectrochemical sensors and the direction to develop new protonicconductors as new electrochemical sensors are discussed. Thefeasibility of protonic conductors worked as hydrogen pump innon-ferrous metal refining processes is discussed as well.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874241,11847224,and 11804195)the Shandong Province Higher Educational Science and Technology Program,China(Grant No.J15LJ03)+1 种基金the Taishan Scholar Project of Shandong Province,China,China Post-Doctoral Foundation(Grant No.2018M630796)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2018BA034)
文摘The excited state intramolecular proton transfer of four derivatives(FM, BFM, BFBC, CCM) of 3-hydroxychromone is investigated.The geometries of different substituents are optimized to study the substituent effects on proton transfer.The mechanism of hydrogen bond enhancement is qualitatively elucidated by comparing the infrared spectra, the reduced density gradient, and the frontier molecular orbitals.The calculated electronic spectra are consistent with the experimental results.To quantify the proton transfer, the potential energy curves(PECs) of the four derivatives in S0 and S1 states are scanned.It is concluded that the ability of proton transfer follows the order: FM > BFM > BFBC > CCM.
基金supported by the National Natural Science Foundation of China(Grants Nos.11474316,11004221,10974224,and 11274348)the"Hundred Talent Program"of Chinese Academy of Sciences+1 种基金supported by NSERC,SHARCnet,ACEnet of Canadathe CAS/SAFEA International Partnership Program for Creative Research Teams
文摘In this paper, we overview recent advances in high-precision structure calculations of the hydrogen molecular ions (H2+ and HD+), including nonrelativistic energy eigenvalues and relativistic and quantum electrodynamic corrections. In combination with high-precision measurements, it is feasible to precisely determine a molecular-based value of the proton- to-electron mass ratio. An experimental scheme is presented for measuring the rovibrational transition frequency (v,L) : (0, 0) → (6,1) in HD+, which is currently underway at the Wuhan Institute of Physics and Mathematics.
基金Project (2002CB211800) supported by the National Basic Research Program of Chinaproject (000Y05-21) supported by the Excellent Young Scholar Research Fund of Beijing Institute of Technology+1 种基金project (20060542012) supported by the Teaching & Research Fund of Beijing Institute of Technologyproject(20071D1600300396) supported by the Beijing Excellent Talent Support Program
文摘Nickel boride alloys,Ni-B,were prepared using chemical reduction method by the reaction of metal chloride with sodium borohydride,and heat-treated at various temperatures. The structures of the as-prepared alloys were studied using X-ray diffractometry(XRD),scanning electronic microscopy(SEM) and nitrogen adsorption-desorption analysis. When being adopted as the catalysts for successive hydrogen generation from sodium borohydride solution,the Ni-B alloy treated at 90 ℃ achieves a maximum hydrogen generation rate of 15.4 L/(min·g),and an average hydrogen generation rate of 13.6 L/min,which can give successive hydrogen supply to a 2.2 kW PEMFC at a hydrogen utilization of 100%.