期刊文献+
共找到579篇文章
< 1 2 29 >
每页显示 20 50 100
Effect of rapid quenching on the microstructure and electrochemical characteristics of La_(0.6)Ce_(0.4)Ni_(3.6)Co_(0.65)Mn_(0.4)Al_(0.2)Ti_(0.05_(FeB)_(0.1) hydrogen storage alloy 被引量:4
1
作者 ZHANG Peilong SONG Xiping +4 位作者 WANG Xiuli PEI Pei LUO Guiping TU Jiangping CHEN Guoliang 《Rare Metals》 SCIE EI CAS CSCD 2010年第6期593-596,共4页
In order to improve the cycling stability of AB5 type alloy electrodes,rapid quenching technology and new alloy composition design were employed.A hydrogen storage alloy with nominal composition La0.6Ce0.4Ni3.6Co0.65M... In order to improve the cycling stability of AB5 type alloy electrodes,rapid quenching technology and new alloy composition design were employed.A hydrogen storage alloy with nominal composition La0.6Ce0.4Ni3.6Co0.65Mn0.4Al0.2Ti0.05(FeB)0.1 was prepared by vacuum magnetic levitation melting under high purity argon atmosphere,followed by rapid quenching at different cooling rates.XRD results show that all alloys exhibit the single-phase CaCu5-type structure.Electrochemical tests indicate that rapid quenching can slightly improve the cycling life of the alloy.Nevertheless,the high-rate dischargeability of the quenched alloys is lower than that of the as-cast alloy. 展开更多
关键词 hydrogen storage alloys electrochemical properties rapid quenching MICROSTRUCTURE
下载PDF
The electrochemical characteristics of AB_(4)-type rare earth-Mg-Ni-based superlattice structure hydrogen storage alloys for nickel metal hydride battery 被引量:5
2
作者 Wenfeng Wang Xiaoxue Liu +6 位作者 Lu Zhang Shuang Zhang Wei Guo Yumeng Zhao Hongming zhang Yuan Li Shumin Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2039-2048,共10页
Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos... Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries. 展开更多
关键词 Nickel metal hydride batteries hydrogen storage alloys AB_(4)-type superlattice structure electrochemical performance Kinetics properties
下载PDF
Phase Structure and Electrochemical Characteristics of Ml(Ni_(3.55)Co_(0.75)Mn_(0.40)Al_(0.30))_(5x)(x=0.88,0.92,0.96,1.00) Hydrogen Storage Alloys
3
作者 关巍 韩树民 +4 位作者 谢丹阳 李媛 李明 毛丽荣 扈琳 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第2期227-231,共5页
The phase structure and electrochemical characteristics of Ml ((Ni3.55Co0.75Mn0.40Al0.30)sx ( x = 0.88, 0.92, 0.96, 1.00) hydrogen storage alloys were studied. The effect of the stoichiometric ratio on the phase ... The phase structure and electrochemical characteristics of Ml ((Ni3.55Co0.75Mn0.40Al0.30)sx ( x = 0.88, 0.92, 0.96, 1.00) hydrogen storage alloys were studied. The effect of the stoichiometric ratio on the phase structure and electrochemical characteristics was analyzed. The results of XRD reveal that all the alloys consist mainly of LaNi5 phase with the hexagonal CaCu5 structure. But a few of the diffraction peaks of La2Ni7 phase on XRD pattern are observed when x ≤ 0.92, and with decreasing x, the intensity of La2Ni7 diffraction peaks increases and the values of lattice parameters a and cell volume increase, c and c/a of LaNi5 phase decrease gradually. When x≥0.96, La2Ni7 phase disappears and the alloys become single CaCu5-type. The electrochemical tests show that the maximum discharge capacity, high rate dischargeability and low temperature dischargeability are improved to different degrees by adjusting the stoichiometric ratio. 展开更多
关键词 hypo-stoichiometric ratio hydrogen storage alloys phase structure electrochemical characteristics rare earths
下载PDF
Effects of doping Fe and Al on microstructure and electrochemical characteristics of Mg-based hydrogen storage alloys
4
作者 谢昭明 《Journal of Chongqing University》 CAS 2005年第4期218-222,共5页
The Mg-based hydrogen storage alloys Mg2Ni, Mg2Ni0.7Fe0.3 and Mgl.7Alo.3Ni were successfully synthesized by a two-step process (sintering and ball milling). The crystal structure and microstructure were examined by ... The Mg-based hydrogen storage alloys Mg2Ni, Mg2Ni0.7Fe0.3 and Mgl.7Alo.3Ni were successfully synthesized by a two-step process (sintering and ball milling). The crystal structure and microstructure were examined by X-ray diffraction, Scanning Electron Microscope and Malvern particle size analyzer. New phase appears in the tripe alloys doped with A1 and Fe, and the particle size ranges from 3μm to 5 μm. The electrochemical performance studies indicate that the partial substitution of AI for Mg, and Fe for Ni significantly improve the cycle life, reversibility of hydrogen absorption and desorption. The diffusion process is the control step in the electrode reaction of hydrogen storage alloys. 展开更多
关键词 Mg-based hydrogen storage alloys two-slep process electrochemical properties
下载PDF
Phase structure and electrochemical properties of La_(0.7)Ce_(0.3)Ni_(3.75)Mn_(0.35)Al_(0.15)Cu_(0.75-x)Fe_x hydrogen storage alloys 被引量:2
5
作者 刘宝忠 李安铭 +2 位作者 范燕平 胡梦娟 张宝庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2730-2735,共6页
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves... La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance. 展开更多
关键词 hydrogen storage alloy AB5-type hydrogen storage alloys phase structures electrochemical property KINETICS Ni-MH battery LaNi5 phase
下载PDF
Phase structure and electrochemical properties of La_(1.7+x)Mg_(1.3-x)(NiCoMn)_(9.3)(x=0-0.4) hydrogen storage alloys 被引量:2
6
作者 魏范松 黎莉 +2 位作者 项宏福 李惠 魏范娜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1995-1999,共5页
The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni... The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging. 展开更多
关键词 hydrogen storage alloy A5B19 type crystal structure electrochemical property La-Mg-Ni system
下载PDF
Effects of annealing treatment on the microstructure and electrochemical properties of low-Co hydrogen storage alloys containing Cu and Fe 被引量:10
7
作者 YANG Suxia LIU Zhiping +2 位作者 HAN Shumin ZHANG Wei SONG Jianzheng 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期464-469,共6页
The effects of annealing treatment on the microstructure and electrochemical properties of low-Co LaNi 3.55 Mn 0.35 Co 0.20 Al 0.20 Cu 0.75 Fe 0.10 hydrogen storage alloys were investigated. X-ray diffraction (XRD) ... The effects of annealing treatment on the microstructure and electrochemical properties of low-Co LaNi 3.55 Mn 0.35 Co 0.20 Al 0.20 Cu 0.75 Fe 0.10 hydrogen storage alloys were investigated. X-ray diffraction (XRD) analysis indicated that annealing treatment remarkably reduced the lattice strain and defects, and increased the unit-cell volume. The optical microscope analysis showed that the as-cast alloy had a crass dendrite microstructure with noticeable composition segregation, which gradually disappeared with increasing annealing temperature, and the micro-structure changed to an equiaxed structure after annealing the alloy at 1233 K. The electrochemical tests indicated that the annealed alloys demonstrated much better cycling stability compared with the as-cast one. The capacity retention at the 100th cycle increased from 90.0% (as-cast) to 94.7% (1273 K). The annealing treatment also improved the discharge capacity. However, the high rate dischargeability (HRD) value of the annealed alloy slightly dropped, which was believed to be ascribed to the decreased exchange current density and the hydrogen diffusion coefficient in alloy bulk. 展开更多
关键词 hydrogen storage alloys ANNEALING phase structure MICROSTRUCTURE electrochemical properties
下载PDF
Effects of Strip Casting and Annealing on Electrochemical Properties of LPCNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3) Hydrogen Storage Alloys 被引量:6
8
作者 吴朝玲 陈云贵 +3 位作者 李锋 陶明大 涂铭旌 唐定骧 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第2期254-258,共5页
The effect of thickness (1 similar to 10 mm) of the ingots on the electrochemical properties of as-cast and annealed strip cast LPCNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys was investigated. It is found that the ... The effect of thickness (1 similar to 10 mm) of the ingots on the electrochemical properties of as-cast and annealed strip cast LPCNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys was investigated. It is found that the 0.2 C discharge capacity of as-cast LPCNi3.55Co0.75Mn0.4Al0.3 alloy increases with the increase of the thickness of the ingots. As-east alloy with the thickness of 10 mm shows better activation property, higher 1C discharge capacity and better cyclic stability than others. It is mainly contributed to its larger unit cell volume and less internal stress. Annealed LPCNi3.55Co0.75Mn0.4Al0.3 alloy with the thickness of 3 mm shows much better comprehensive electrochemical properties than as-east one; The cyclic. stability of the alloy with the thickness of 6 mm and the activation properties of the alloys with the thickness of 3 similar to 6 mm are improved after annealing. It is mainly owing to the great release of internal stress and the decrease of the segregation of Mn in the alloys. 展开更多
关键词 energy materials strip casting ANNEALING electrochemical property AB(5)-type hydrogen storage alloy rare earths
下载PDF
Microstructure and electrochemical properties of melt-spun Nd_(0.8)Mg_(0.2)(Ni_(0.8)Co_(0.2))_(3.8) hydrogen storage alloy 被引量:2
9
作者 潘崇超 蔡吴鹏 +2 位作者 王震 耿朝青 于荣海 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第1期100-103,共4页
The effects of rapid solidification on the microstructure and electrochemical properties of Nd0.8Mg0.2(Ni0.8Co0.2)3.8 alloy were systematically investigated.The microstructure of alloys was characterized by scanning e... The effects of rapid solidification on the microstructure and electrochemical properties of Nd0.8Mg0.2(Ni0.8Co0.2)3.8 alloy were systematically investigated.The microstructure of alloys was characterized by scanning electron microscopy(SEM),X-ray diffractometer(XRD) and transmission electron microscopy(TEM).It was found that the melt-spun Nd0.8Mg0.2(Ni0.8Co0.2)3.8 ribbons became thinner and the average grain size of the ribbons became smaller with increasing wheel speed.A fraction of amorphous phase was obs... 展开更多
关键词 hydrogen storage alloy rapid solidification MICROSTRUCTURE electrochemical property rare earths
下载PDF
Structure and Electrochemical Properties of A_2B_7-Type La-Mg-Ni Hydrogen Storage Alloys 被引量:2
10
作者 Zhang Faliang Luo Yongchun Zhang Yongchao Deng Anqiang Kang Long Chen Jianhong 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期625-625,共1页
Investigation of alloy structure shows that La2-xMgxNi7 (x = 0.3 - 0.8) alloys are mainly com- posed of Ce/Ni7-type, Gd2Co7-type and PuNi3-type phase. The influence of Mg content in alloys on the phase structure is ... Investigation of alloy structure shows that La2-xMgxNi7 (x = 0.3 - 0.8) alloys are mainly com- posed of Ce/Ni7-type, Gd2Co7-type and PuNi3-type phase. The influence of Mg content in alloys on the phase structure is great, resulting in a linear decrease of the unit cell parameters of main phases and increase of hydrogen absorption/desorption plateau as Mg content increases. Electrochemical measurements show that as the Mg content increases, the discharge capacity of alloy electrodes first increases and then decreases. The cyclic stability presents a deteriorative trend. La1.4Mg0.6 Ni7 alloy electrode exhibits the maximum electrochemical discharge capacity (378 mAh·g^-1), and the La1.6Mg0.4Ni7 alloy electrode shows the best cyclic stability (S270 = 81%). 展开更多
关键词 hydrogen storage alloy A2B7-type P-C-T isotherm electrochemical properties rare earths
下载PDF
Electrochemical Properties of Strip Casting LPCNi_(3.55) Co_(0.75) Mn_(0.4) Al_(0.3) Hydrogen Storage Alloys 被引量:1
11
作者 吴朝玲 陈云贵 +3 位作者 李锋 唐定骧 李梦 涂铭旌 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第5期517-521,共5页
LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 hydrogen storage alloy was investigated, and the effects of thickness of its strip casting ingots(as cast) on the electrochemical performances were discussed. It was ... LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 hydrogen storage alloy was investigated, and the effects of thickness of its strip casting ingots(as cast) on the electrochemical performances were discussed. It was found that the 0.2 C discharge capacity increased with the increase of the thickness (from 1 mm to 10 mm) of the ingots, mainly due to the enlargement of the unit cell volume; Among the thickness of the ingots in our study, 10 mm sample showed a better activation property; LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 alloy with 10mm showed higher comprehensive properties than those with other thickness under 1C rate. 展开更多
关键词 rare earths strip casting electrochemical properties AB 5 type hydrogen storage alloys
下载PDF
Study on Particle Size and Electrochemical Properties of Rare Earth Based Hydrogen Storage Alloys 被引量:1
12
作者 刘向东 黄丽宏 +1 位作者 闫淑芳 陈伟东 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期363-365,共3页
The rare earth based hydrogen storage alloys Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) were chosen as objects of investigation in this paper. The effects of particle size on electrochemical properties of the allo... The rare earth based hydrogen storage alloys Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) were chosen as objects of investigation in this paper. The effects of particle size on electrochemical properties of the alloy were investigated. The results indicate that the alloy with particle size of 100 and 150 mesh shows good activation behavior and high discharge capacity (the first discharge capacity and the maximum discharge capacity), but poor cycling stability, low capacity retention and high discharge capacity rate. The Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) alloy with particle size of 150 mesh shows excellent electrochemical properties. 展开更多
关键词 rare earth based hydrogen storage alloy particle size electrochemical property
下载PDF
Effect of commercial AB_5 alloy addition on the electrochemical properties of Ml-Mg-Ni-based hydrogen storage alloys
13
作者 HU Lin HAN Shumin +2 位作者 LI Jinhua ZHU Xilin LI Yuan 《Rare Metals》 SCIE EI CAS CSCD 2008年第4期429-433,共5页
A commercial AB5 hydrogen storage alloy was used as an additive to improve the electrochemical properties of Ml-Mg-Ni-based hydrogen storage alloys. The effect of AB5 alloy addition on the phase structure, charge/disc... A commercial AB5 hydrogen storage alloy was used as an additive to improve the electrochemical properties of Ml-Mg-Ni-based hydrogen storage alloys. The effect of AB5 alloy addition on the phase structure, charge/discharge characteristics, and electrochemical kinetics of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 alloy was investigated. The maximum discharge capacity of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 + 4 wt.% AB5 electrode reaches 406 mAh/g. The anodic polarization, cyclic voltammetry, and potential step discharge experiments show that the electrochemical kinetics of the electrode with additives was promoted, with the LaNi5 phase of AB5 alloy acting as electro-catalytic sites in the electrode alloy. The high-rate dischargeability of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 + 4 wt.% AB5 alloy electrode at 1100 mA/g reaches 60.9%, which is 9.4% higher than that of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 alloy electrode. The cycling stability of the electrode with 4 wt.% AB5 alloy has also been improved 展开更多
关键词 hydrogen storage alloys ADDITIVE rare earths electrochemical properties electrochemical kinetics
下载PDF
Influences of Ti substitution on the structure and electrochemical properties of Mg_(1-x)Ti_xNi(x=0,0.1, 0.2, and 0.3) hydrogen storage alloys
14
作者 HUANG Hongxia HUANG Kelong +1 位作者 LIU Suqin CHEN Dongyang 《Rare Metals》 SCIE EI CAS CSCD 2009年第5期504-510,共7页
MgNi-based hydrogen storage alloys Mg1–xTixNi (x = 0, 0.1, 0.2, and 0.3) were prepared by means of mechanical alloying. Mg in the alloy was partially substituted by Ti to improve the cycle stability of the alloys. ... MgNi-based hydrogen storage alloys Mg1–xTixNi (x = 0, 0.1, 0.2, and 0.3) were prepared by means of mechanical alloying. Mg in the alloy was partially substituted by Ti to improve the cycle stability of the alloys. The effects of the substitution of Ti for Mg on the microstructure and electrochemical performances of the alloys were investigated in detail. The results indicate that the substitution of Ti for Mg obviously decreases the discharge capacity, but it significantly improves their cycle stabilities. The microstructure of the alloys analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that the alloys have a dominatingly amorphous structure. The substitution of Ti for Mg helps to improve the anti-oxidation/corrosion ability of the MgNi alloy but demolishes the electrochemical kinetics of hydrogenation/dehydrogenation. The Mg0.9Ti0.1Ni alloy electrode milled for 80 h exhibits the best integrative capability, which has the maximal discharge capacity of 331.66 mAh/g and the C30/Cmax of 63.65%. 展开更多
关键词 hydrogen storage alloys Ti substitution structural characteristic electrochemical properties
下载PDF
Electrochemical characteristics of amorphous MgTi_xNi(x = 0,0.1,and 0.2) hydrogen storage alloys
15
作者 LIU Suqin,ZHAO Wenjuan,HUANG Kelong,and HUANG Hongxia College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第5期486-490,共5页
MgTixNi (x = 0, 0.1, and 0.2) alloys were successfully prepared by mechanical alloying (MA), and the influence of milling time on the electrochemical characteristics of the electrodes was discussed. MgTixNi alloys... MgTixNi (x = 0, 0.1, and 0.2) alloys were successfully prepared by mechanical alloying (MA), and the influence of milling time on the electrochemical characteristics of the electrodes was discussed. MgTixNi alloys after 90 h milling displayed the best electrochemical performance The X-ray diffraction patterns showed that the alloy ball-milled for 90 h was amorphous with a widened diffraction peak. The charge-discharge tests indicated that these alloys had good electrochemical activation properties, and the MgTi0.2Ni alloy electrode exhibited the best cycle performance. The initial discharge capacity of the MgTi0.2Ni alloy reached up to 401.1 mAh·g^-1, and the retention rate of capacity was 31.0% after 30 cycles, much higher than that of MgNi (17.3%). The Tafel polarization curves revealed that Ti addition could enhance the anticorrosion performance of these alloys in alkali solution, which was responsible for the ameliorated cyclic stability of these alloy electrodes. 展开更多
关键词 hydrogen storage alloys TITANIUM electrochemical properties mechanical alloying
下载PDF
Effect of Rare Earth Elements on Structure and Electrochemical Properties of PuNi_3-type Hydrogen Storage Alloys
16
作者 张法亮 罗永春 +1 位作者 阎汝煦 陈剑虹 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期343-349,共7页
Structure and electrochemical properties of (La, Ce, Pr, Nd)_2MgNi_9 hydrogen storage alloys were investigated through orthogonal design experiments, and the alloys were obtained through induction melting followed by ... Structure and electrochemical properties of (La, Ce, Pr, Nd)_2MgNi_9 hydrogen storage alloys were investigated through orthogonal design experiments, and the alloys were obtained through induction melting followed by annealing treatment. The structure of main phase in alloys belongs to PuNi_3-type with a space group R3m. Rare earth elements, as a substitute of lanthanum, have a significant effect on phase structure of alloys, elements of cerium and neodymium are beneficial to the formation of Gd_2Co_7-type phase with a space group P 6_3/mmc. Rare earth elements can decrease the unit cell volume of main phase of alloys dramatically, and increase the axis ratio. The results of electrochemical experiment showed that the discharge capacity of alloy electrodes ranged from 342.97 to 380.68 mAh·g -1, and elements of cerium and neodymium can reduce the discharge capacity of alloy electrodes significantly. Compared to the electrode of La_2MgNi_9 alloy, the substitution of lanthanum by rare earth elements did not improve the cyclic stability of alloy electrodes due to the anisotropic structure change of unit cell. While rare-earth elements can improve the high rate dischargeability of alloy electrodes, the high rate dischargeability of alloy electrodes could reach the maximum when the unit cell volume of PuNi_3-type structure was about 0532 nm. 展开更多
关键词 hydrogen storage alloy PuNi_3-type crystal structure electrochemical properties orthogonal experiment design
下载PDF
Effect of Rapid Quenching on Electrochemical Properties of AB_5 and AB_(3.5)-Type Hydrogen Storage Alloys
17
作者 李平 郑雪萍 +2 位作者 安富强 Islam S.Humail 曲选辉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期135-138,共4页
Effect of rapid quenching on the electrochemical properties of AB5 and AB3.5-type hydrogen storage alloys was studied. The results indicated that the discharge capacities of the rapid quenching MmNi3.55Co0.75Mn0.4Al0.... Effect of rapid quenching on the electrochemical properties of AB5 and AB3.5-type hydrogen storage alloys was studied. The results indicated that the discharge capacities of the rapid quenching MmNi3.55Co0.75Mn0.4Al0.3 alloys decrease under 25 and -35 ℃ with the increase of the quenching rate. Comparatively, the decrease extent of the quenching alloys at -35 ℃ is lower than that at 25 ℃. The result on the study of the cycle life indicated that the quenching process was favorable to improve the cycle stabilities of the MmNi3.55Co0.75-Mn0.4Al0.3 alloys under 25 and -35 ℃. Whereas, the effect of the quenching process on the La0.7Mg0.3(Ni0.85Co0.15)3.5 alloy was different at 25 ℃ from at -35 ℃. Under 25 ℃, the cycle life of the alloy was obviously improved by the quenching process, however, the quenching process did not improve but decreased slightly the cycle life at -35 ℃. 展开更多
关键词 rapid quenching electrochemical properties hydrogen storage alloys
下载PDF
Study on Phase Structure and PCT Characteristics of Rare Earth Based Hydrogen Storage Alloys
18
作者 刘向东 闫淑芳 陈伟东 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期366-368,共3页
The rare earth based hydrogen storage alloys Mm_xMl_ 1-xNi_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3(x=0~0.50) were investigated in this work. The influences of phase structure on the PCT characteristics were analyzed by means of ... The rare earth based hydrogen storage alloys Mm_xMl_ 1-xNi_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3(x=0~0.50) were investigated in this work. The influences of phase structure on the PCT characteristics were analyzed by means of electrochemical measurements. The results indicate that there is a strict relationship between crystal volume and PCT characteristics. 展开更多
关键词 rare earth based hydrogen storage alloy phase structure pct characteristics
下载PDF
Microstructure and electrochemical properties of LaNi_(4-x)FeMn_x (x=0-0.8) hydrogen storage alloys 被引量:4
19
作者 羊恒 陈云贵 +1 位作者 陶明大 吴朝玲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第5期853-857,共5页
In order to reduce the cost of LaNi5 based hydrogen storage alloys, effect of substitution of Mn for Ni on structural and electrochemical properties of LaNi4-xFeMnx (x=0-0.8) hydrogen storage alloys was studied system... In order to reduce the cost of LaNi5 based hydrogen storage alloys, effect of substitution of Mn for Ni on structural and electrochemical properties of LaNi4-xFeMnx (x=0-0.8) hydrogen storage alloys was studied systematically. X-ray diffraction (XRD) and scanning electron microscope (SEM) showed that LaNi5 and La2Ni7 phases were invariably present in all alloy samples, and when x >= 0.4, (Fe, Ni) phase was observed. Electrochemical studies revealed that the discharge capacity reached a maximum value of 306.4 mAh/g when x=0.2 and the cycling stability decreased with the increase of x. With the increase of Mn content, hydrogen diffusion coefficient decreased, whereas high rate discharge-ability (HRD) and exchange current density first increased slowly when x <= 0.2 and then decreased markedly when x=0.8, indicating that electrochemical reaction on the surface of alloy electrodes had strong influence on kinetic property. 展开更多
关键词 hydrogen storage materials electrochemical properties Co-free AB(5)-type alloy rare earths
下载PDF
Influences of heat treatment on electrochemical characteristics of La_(0.75)Mg_(0.25)Ni_(2.8)Co_(0.5) hydrogen storage electrode alloy 被引量:3
20
作者 刘永锋 潘洪革 +2 位作者 高明霞 朱云峰 雷永泉 《中国有色金属学会会刊:英文版》 CSCD 2003年第1期25-28,共4页
The influences of annealing treatment on the electrochemical and structural properties of La 0.75Mg 0.25- Ni 2.8Co 0.5 hydrogen storage alloy were investigated by means of electrochemical studies and X-ray diffraction... The influences of annealing treatment on the electrochemical and structural properties of La 0.75Mg 0.25- Ni 2.8Co 0.5 hydrogen storage alloy were investigated by means of electrochemical studies and X-ray diffraction(XRD) analyses. The XRD results reveal that the peak width gets narrower with increasing annealing temperature, which can be ascribed to the structural change and more homogeneous composition after being annealed. Electrochemical studies show that the discharge capacity and the cycle stability of the alloy electrodes increase after being annealed. The maximum discharge capacity, exchange current density J 0 and limiting current density J L of the as-cast alloy are 388 mA·h/g, 340.5 mA/g and 3 068 mA/g, respectively, and they are increased to 400 mA·h/g, 372.1 mA/g and 3 399 mA/g for the alloy annealed at 1 123 K for 8 h, respectively. Meanwhile, as the discharge current density is 1 250 mA/g, the high rate dischargeability(HRD) increases from 77.4% for the as-cast alloy to 83.3% for the alloy annealed at 1 123 K. 展开更多
关键词 热处理 储氢合金 镧镁镍钴合金 电化学性质
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部