期刊文献+
共找到438篇文章
< 1 2 22 >
每页显示 20 50 100
Interfacial built-in electric field and crosslinking pathways enabling WS_(2)/Ti_(3)C_(2)T_(x) heterojunction with robust sodium storage at low temperature
1
作者 Jiabao Li Shaocong Tang +6 位作者 Jingjing Hao Quan Yuan Tianyi Wang Likun Pan Jinliang Li Shenbo Yang Chengyin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期635-645,I0014,共12页
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch... Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained. 展开更多
关键词 WS_(2)/Ti_(3)C_(2)T_(x)heterojunction Built-in electric field Ion reservoir Reaction kinetics Sodium storage performance at low temperature
下载PDF
Electrochemical performances of hydrogen storage alloys treated using a new milling technique
2
作者 LIU Kaiyu ZHANG Ying +1 位作者 ZHANG Wei HE Yuehui 《Rare Metals》 SCIE EI CAS CSCD 2008年第3期273-277,共5页
A new self-made additive of amidocyanogen-acetic salt was used in wet ball-grind technique (WBGT) for preparing hydrogen storage alloys, and the effect on the electrochemical performance of the alloy electrode was i... A new self-made additive of amidocyanogen-acetic salt was used in wet ball-grind technique (WBGT) for preparing hydrogen storage alloys, and the effect on the electrochemical performance of the alloy electrode was investigated in detail. It was found that the prepared electrode had perfect electrochemical performances, such as rapid activation, high capability, high-rate discharge (HRD) ability, and good stability. The first discharge capacitance at 0.2 C (throughout this study, n C rate means that the rated capacity of a hydrogen storage alloy (full capacity) is charged or discharged completely in 1/n h) reached 278 mAh·g^-1 and the discharge capacitance reached the maximum of 322 mAh·g^-1 only after two charge-discharge cycles. For the dry method, wet method, and WBGT, the high rate discharge (HRD) values (C5 c/C0.2c ratio) were approximately 0.59, 0.76, and 0.83, respectively. The stable discharge capacity at 3 C increased from 275 mAh·g^-1 (dry method)to 295 mAh·g^-1 (WBGT). 展开更多
关键词 hydrogen storage alloys ball milling wet grinding electrochemical performance kineticS
下载PDF
Phase structure and electrochemical properties of La_(0.7)Ce_(0.3)Ni_(3.75)Mn_(0.35)Al_(0.15)Cu_(0.75-x)Fe_x hydrogen storage alloys 被引量:2
3
作者 刘宝忠 李安铭 +2 位作者 范燕平 胡梦娟 张宝庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2730-2735,共6页
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves... La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance. 展开更多
关键词 hydrogen storage alloy AB5-type hydrogen storage alloys phase structures electrochemical property kineticS Ni-MH battery LaNi5 phase
下载PDF
Shell and shrinking core kinetics model of Mg-based hydrogen storage alloys
4
作者 于振兴 王尔德 +3 位作者 张文丛 房文斌 孙宏飞 梁吉 《中国有色金属学会会刊:英文版》 CSCD 2005年第S2期178-182,共5页
The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption... The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption process with shell diffusion as the controlling step were determined by semi-empirical and semi-theoretical methods, and the apparent activation energy of the hydrogen absorption process was obtained. The calculation results can well accord with the experimental data, and can well forecast the hydrogen storage capacity and absorption rate at different times. By using the kinetics equation, the effects of temperature and pressure on the hydrogen storage process can also be well understood. The kinetics equation is helpful for the design of the hydrogen storage container. 展开更多
关键词 Mg-based alloys hydrogen storage SHELL and CORE SHRINKING model kineticS EQUATION
下载PDF
Influence of Temperature on Electrochemical Performances of Rare Earth Based Hydrogen Storage Material
5
作者 李志尊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第1期19-21,共3页
In view of the higher temperature of large-size NilMH battery in electric vehicle, the effect of temperature on electrochemical performances of hydrogen storage alloy Ml ( NiCoMnTi )5 was investigated systematically... In view of the higher temperature of large-size NilMH battery in electric vehicle, the effect of temperature on electrochemical performances of hydrogen storage alloy Ml ( NiCoMnTi )5 was investigated systematically. The results show that the electrochemical performances of alloy vary drastically with temperature changing. As temperature rises, the hydrogen equilibrium pressure increases, the width of hydrogen desorption plateau decreases and the gradient increases, leading to a decline of capacity. When temperature rises from 20 ℃ to 80 ℃ , the discharge capacity of the alloy decreases from 309.11 mA· h· g^-1 to 227.64 mA· h· g^-1 , but the high rate dischargeability is improved markedly. Higher temperatures also bring about a significant decrease in the cycling stability and self-discharge property. X-ray diffraction analysis indicates that the alloy has a single phase with CaCu5-type LaNi5 structure. 展开更多
关键词 temperature hydrogen storage alloy electrochemical performance
下载PDF
The electrochemical characteristics of AB_(4)-type rare earth-Mg-Ni-based superlattice structure hydrogen storage alloys for nickel metal hydride battery 被引量:7
6
作者 Wenfeng Wang Xiaoxue Liu +6 位作者 Lu Zhang Shuang Zhang Wei Guo Yumeng Zhao Hongming zhang Yuan Li Shumin Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2039-2048,共10页
Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos... Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries. 展开更多
关键词 Nickel metal hydride batteries hydrogen storage alloys AB_(4)-type superlattice structure Electrochemical performance kinetics properties
下载PDF
Effect of commercial AB_5 alloy addition on the electrochemical properties of Ml-Mg-Ni-based hydrogen storage alloys
7
作者 HU Lin HAN Shumin +2 位作者 LI Jinhua ZHU Xilin LI Yuan 《Rare Metals》 SCIE EI CAS CSCD 2008年第4期429-433,共5页
A commercial AB5 hydrogen storage alloy was used as an additive to improve the electrochemical properties of Ml-Mg-Ni-based hydrogen storage alloys. The effect of AB5 alloy addition on the phase structure, charge/disc... A commercial AB5 hydrogen storage alloy was used as an additive to improve the electrochemical properties of Ml-Mg-Ni-based hydrogen storage alloys. The effect of AB5 alloy addition on the phase structure, charge/discharge characteristics, and electrochemical kinetics of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 alloy was investigated. The maximum discharge capacity of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 + 4 wt.% AB5 electrode reaches 406 mAh/g. The anodic polarization, cyclic voltammetry, and potential step discharge experiments show that the electrochemical kinetics of the electrode with additives was promoted, with the LaNi5 phase of AB5 alloy acting as electro-catalytic sites in the electrode alloy. The high-rate dischargeability of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 + 4 wt.% AB5 alloy electrode at 1100 mA/g reaches 60.9%, which is 9.4% higher than that of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 alloy electrode. The cycling stability of the electrode with 4 wt.% AB5 alloy has also been improved 展开更多
关键词 hydrogen storage alloys ADDITIVE rare earths electrochemical properties electrochemical kinetics
下载PDF
Electrode properties and phase composition of Ti_(0.5)Ni_(0.25)Al_(0.25) hydrogen storage alloys and theoretical simulation
8
作者 吴军 徐艳辉 +2 位作者 陈长聘 郑军伟 李德成 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第10期1899-1905,共7页
Ti0.5Al0.25Ni0.25 alloy prepared by vacuum induction melting was studied.The phase composition was analyzed with X-ray technique and EDS analysis,and its electrochemical properties were investigated at various tempera... Ti0.5Al0.25Ni0.25 alloy prepared by vacuum induction melting was studied.The phase composition was analyzed with X-ray technique and EDS analysis,and its electrochemical properties were investigated at various temperatures.Electrochemical reaction kinetic parameters were also studied with proper electrochemical techniques.The influence of the secondary corrosion reaction on the anodic linear polarization measurement was also analyzed by theoretical simulation.The results show that,proper ball-milling with nickel powders is beneficial to electrochemical performance.The theoretical simulation proves that,the existence of the side reaction can disturb the measurement of electrochemical reaction kinetic parameters. 展开更多
关键词 hydrogen storage alloy electrochemical kinetics metal hydride electrode theoretical simulation
下载PDF
Tuning microstructures of Mg-Ce-Ni hydrogen storage alloys via Cu and carbon nanotube additions
9
作者 Linlin Zhang Liang Xiong +7 位作者 Bingyang Gao Qingyun Shi Ying Wang Zhiya Han Zhenhua Zhang Chunli Wang Limin Wang Yong Cheng 《Nano Research》 SCIE EI CSCD 2024年第8期7203-7211,共9页
Mg-based alloys are regarded as highly promising materials for hydrogen storage.Despite significant improvements of the properties for Mg-based alloys,challenges such as slow hydrogen absorption/desorption kinetics an... Mg-based alloys are regarded as highly promising materials for hydrogen storage.Despite significant improvements of the properties for Mg-based alloys,challenges such as slow hydrogen absorption/desorption kinetics and high thermodynamic stability continue to limit their practical application.In this study,to assess hydrogen storage alloys with enhanced properties,incorporating both internal microstructure modulation through the preparation of amorphous/nanocrystalline structures and surface property enhancement with the addition of Cu and carbon nanotubes(CNTs),the kinetic properties of activation and hydrogenation,thermodynamic properties,and dehydrogenation kinetics are tested.The results reveal a complementary interaction between the added Cu and CNTs,contributing to the superior hydrogen storage performance observed in sample 7A-2Cu-1CNTs with an amorphous/nanocrystalline structure compared to the other experimental samples.Additionally,the samples are fully activated after the initial hydrogen absorption and desorption cycle,demonstrating outstanding hydrogenation kinetics under both high and low temperature experimental conditions.Particularly noteworthy is that the hydrogen absorption exceeds 1.8 wt.% within one hour at 333 K.Furthermore,the activation energy for dehydrogenation is decreased to 64.71 kJ·mol^(–1).This research may offer novel insights for the design of new-type Mg-based hydrogen storage alloys,which possess milder conditions for hydrogen absorption and desorption. 展开更多
关键词 Mg-Ni-Ce alloy hydrogen storage amorphous/nanocrystalline structure kinetics Cu and carbon nanotubes(CNTs)codoping
原文传递
High-temperature electrochemical performance and phase composition of Ti_(0.7) Zr_(0.5) V_(0.2) Mn_(1.8-x)Ni_x hydrogen storage electrode alloys 被引量:1
10
作者 徐艳辉 陈长聘 +2 位作者 李寿权 应窕 王启东 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期350-352,共3页
The rapid development of electric vehicles demands the development of high performance nickel metal hydride battery that is able to endure high temperature. The discharge properties of Ti 0.7 Zr 0.5 V 0.2 Mn 1.8- x Ni... The rapid development of electric vehicles demands the development of high performance nickel metal hydride battery that is able to endure high temperature. The discharge properties of Ti 0.7 Zr 0.5 V 0.2 Mn 1.8- x Ni x ( x =0.4, 0.8, 1.1, 1.4, 1.7)hydrogen storage alloys was investigated and its phase composition was analyzed using X ray diffraction. The results show that the cycling life was improved as the content of nickel increases. When x =0.4, 0.8, 1.1 and 1.4, the main phase is MgZn 2 type C14 Laves phase and the second one is cubic TiNi phase. When x =1.7, the Laves phase structure disappears. EDAS analysis shows that the increase of nickel content is effective in suppressing the dissolution of vanadium component in alloys. [ 展开更多
关键词 hydrogen storage electrode alloys high temperature electrochemical performance phase composition
下载PDF
Effect of Al on Behavior of AB_5-Type Metal Hydride Anodes at Elevated Temperature 被引量:1
11
作者 Shou-shi Fang Xiao-chun Li +1 位作者 Jin-long Zhang Jian-sheng Ge 《Advances in Manufacturing》 SCIE CAS 2000年第4期335-337,共3页
AB 5 type hydrogen storage alloys are the most promising materials used as the anode in commercial Ni MH secondary battery. It is very important for electrode materials to have a wider operation temperature range. ... AB 5 type hydrogen storage alloys are the most promising materials used as the anode in commercial Ni MH secondary battery. It is very important for electrode materials to have a wider operation temperature range. The component Al is the dominant element to control the electrochemical behavior of the AB 5 type alloys at elevated temperature. With the increase of the amount of Al the discharge capacity decreases and the retention of discharge capacity increases with increasing temperature. It is mainly due to the formation of stable and dense surface oxide film Al 2O 3, which inhibits the electrode corrosion and the further oxidation underneath the surface films. 展开更多
关键词 hydrogen storage alloys discharge capacity elevated temperature
下载PDF
Influences of molybdenum substitution for cobalt on the phase structure and electrochemical kinetic properties of AB_5-type hydrogen storage alloys 被引量:8
12
作者 杨淑琴 韩树民 +1 位作者 宋建争 李媛 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第7期692-697,共6页
The effects of the partial replacement of Co with Mo on the phase structure and electrochemical kinetic properties of La0.35Ce0.65Ni3.54Co0.80-xMn0.35Al0.32Mox (x=0.00, 0.10, 0.15, 0.20, 0.25) hydrogen storage alloy... The effects of the partial replacement of Co with Mo on the phase structure and electrochemical kinetic properties of La0.35Ce0.65Ni3.54Co0.80-xMn0.35Al0.32Mox (x=0.00, 0.10, 0.15, 0.20, 0.25) hydrogen storage alloys prepared by arc-melting method were sys-tematically studied in this paper. The X-ray diffraction (XRD) showed that after partial substitution of Mo for Co, the alloys remained a single LaNi5 phase with a hexagonal CaCu5-type structure. The P-C isotherms indicated that the equilibrium pressure gradually decreased with in-creasing of Mo content. Electrochemical studies showed that the substitution of Mo for Co could greatly increase discharge capacity, improve activation ability and reduce self-discharge of alloy electrodes. The alloy with x=0.25 exhibited a higher rate dischargeability (HRD1200= 50.9%). Moreover, Mo is a vital element in favor of kinetic properties of AB5-type hydrogen storage alloys. As Mo content increased, the ex-change current density I0, the hydrogen diffusion rate gradually increased. 展开更多
关键词 hydrogen storage alloys Mo substitution phase structure electrochemical kinetic characteristics rare earths
原文传递
Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH_(2)
13
作者 Nuo Xu Zirui Yuan +4 位作者 Zhihong Ma Xinli Guo Yunfeng Zhu Yongjin Zou Yao Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期54-62,共9页
MgH_(2)with a large hydrogen capacity is regarded as a promising hydrogen storage material.However,it still suffers from high thermal stability and sluggish kinetics.In this paper,highly dispersed nano-Ni has been suc... MgH_(2)with a large hydrogen capacity is regarded as a promising hydrogen storage material.However,it still suffers from high thermal stability and sluggish kinetics.In this paper,highly dispersed nano-Ni has been successfully prepared by using the polyol reduction method with an average size of 2.14 nm,which significantly improves the de/rehydrogenation properties of MgH_(2).The MgH_(2)–10wt%nano-Ni sample starts releasing H_(2)at 497 K,and roughly 6.2wt%H_(2)has been liberated at 583 K.The rehydrogenation kinetics of the sample are also greatly improved,and the adsorption capacity reaches 5.3wt%H_(2)in 1000 s at 482 K and under 3 MPa hydrogen pressure.Moreover,the activation energies of de/rehydrogenation of the MgH_(2)–10wt%nano-Ni sample are reduced to(88±2)and(87±1)kJ·mol−1,respectively.In addition,the thermal stability of the MgH_(2)–10wt%nano-Ni system is reduced by 5.5 kJ per mol H_(2)from that of pristine MgH_(2).This finding indicates that nano-Ni significantly improves both the thermodynamic and kinetic performances of the de/rehydrogenation of MgH_(2),serving as a bi-functional additive of both reagent and catalyst. 展开更多
关键词 Ni nanoparticle kineticS THERMODYNAMICS MgH2 hydrogen storage performance
下载PDF
Phase transformation,thermodynamics and kinetics property of Mg90Ce5RE5(RE=La,Ce,Nd)hydrogen storage alloys 被引量:8
14
作者 Hui Yong Shihai Guo +3 位作者 Zeming Yuan Yan Qi Dongliang Zhao Yanghuan Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第16期84-93,共10页
The Mg90Ce5 RE5(RE=La,Ce,Nd)alloys were prepared by a vacuum induction furnace and their micro structure,phase transformation,thermodynamics and kinetics property were systematically studied by XRD,SEM,TEM,and PCT cha... The Mg90Ce5 RE5(RE=La,Ce,Nd)alloys were prepared by a vacuum induction furnace and their micro structure,phase transformation,thermodynamics and kinetics property were systematically studied by XRD,SEM,TEM,and PCT characterization methods.The result shows that the activated alloys are composed of Mg/MgH2 and corresponding REH2+x with nanoscale.The REH2+x grain with Ce and La or Nd functional group have lower nucleation potential barriers than CeH2+x grains as the nucleation location,thus improve the hydrogen absorption kinetics of these alloys among which the Mg90Ce5Nd5 alloy can absorb 90%of the hydrogen within 2 min at 320℃.In addition,the Mg90Ce10 alloy has the lowest activation energy with 103.2 kJ mol-1 and the fastest desorption kinetics,which can release 5 wt%of the hydrogen within 20 min at 320℃.This is a correlation with grain size and the in-suit formed CeH2.73/CeO2 interface.Moreover,the co-doping Ce and La or Nd can effectively disorganize the thermodynamic stability of Mg-based hydrogen storage alloys to a certain degree,but the dehydrogenation kinetics of that still is restricted by the recombination energy of hydrogen ions on the surface. 展开更多
关键词 RE-Mg-based alloy hydrogen storage THERMODYNAMICS kinetics INTERMETALLIC
原文传递
Microstructure, hydrogen storage thermodynamics and kinetics of La_5Mg_(95-x)Ni_x(x=5, 10, 15) alloys 被引量:4
15
作者 Zhen-yang LI Sheng-li LI +2 位作者 Ze-ming YUAN Yang-huan ZHANG Yan QI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期1057-1066,共10页
The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimenta... The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimental alloys were characterized by X-ray diffractometry and scanning electron microscopy. The hydrogen storage kinetics and thermodynamics, and P-C-I curves were tested using a Sievert apparatus. It is found that increasing Ni content remarkably improves hydrogen storage kinetics but reduces the hydrogen storage capacity of alloys. The highest hydrogen absorption/desorption rate is observed in the La5Mg80Ni15 alloy, with the lowest hydrogen desorption activation value being 57.7 kJ/mol. By means of P-C-I curves and the van’t Hoff equation, it is determined that the thermodynamic performance of the alloy is initially improved and then degraded with increasing Ni content. The La5Mg85Ni10 alloy has the best thermodynamics properties with a hydrogenation enthalpy of -72.1 kJ/mol and hydrogenation entropy of -123.2 J/(mol·K). 展开更多
关键词 hydrogen storage Mg-based alloys thermodynamics performance kinetics performance Ni content
下载PDF
Gaseous and Electrochemical Hydrogen Storage Kinetics of As-quenched Nanocrystalline and Amorphous Mg_2Ni-type Alloys 被引量:4
16
作者 张羊换 YANG Tai +3 位作者 SHANG Hongwei ZHANG Guofang CAI Ying ZHAO Dongliang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期604-611,共8页
The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by melt quenching technology. The structures of the as-cast and quenched alloys were characterized by XRD,... The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by melt quenching technology. The structures of the as-cast and quenched alloys were characterized by XRD, SEM and HRTEM. The gaseous hydrogen storage kinetics of the alloys was measured using an automatically controlled Sieverts apparatus. The alloy electrodes were charged and discharged with a constant current density in order to investigate the electrochemical hydrogen storage kinetics of the alloys. The results demonstrate that the substitution of Co for Ni results in the formation of secondary phases MgCo2 and Mg instead of altering the major phase Mg2Ni. No amorphous phase is detected in the as-quenched Co- ffee alloy, however, a certain amount of amorphous phase is clearly found in the as-quenched alloys substituted by Co. Furthermore, both the rapid quenching and the Co substitution significantly improve the gaseous and electrochemical hydrogen storage kinetics of the alloys, for which the notable increase of the hydrogen diffusion coefficient (D) along with the limiting current density (IL) and the obvious decline of the electrochemical impedance generated by both the Co substitution and the rapid quenching are basically responsible. 展开更多
关键词 Mg2Ni-type alloy rapid quenching substituting Ni with Co hydrogen storage kinetics
下载PDF
Influences of melt spinning on electrochemical hydrogen storage performance of nanocrystalline and amorphous Mg_2Ni-type alloys 被引量:4
17
作者 张羊换 李保卫 +3 位作者 任慧平 侯忠辉 胡峰 王新林 《Journal of Central South University》 SCIE EI CAS 2011年第6期1825-1832,共8页
In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20-xLaxNi10 ... In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20-xLaxNi10 (x-=0, 2) alloys were synthesized by melt-spinning technique. The microstructures of the as-spun alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage properties of the experimental alloys were tested. The results show that no amorphous phase is detected in the as-spun Mg20Ni10 alloy, but the as-spun Mg18La2Ni10 alloy holds a major amorphous phase. As La content increases from 0 to 2, the maximum discharge capacity of the as-spun (20 m/s) alloys rises from 96.5 to 387.1 mA.h/g, and the capacity retaining rate (S20) at the 20th cycle grows from 31.3% to 71.7%. Melt-spinning engenders an impactful effect on the electrochemical hydrogen storage performances of the alloys. With the increase in the spinning rate from 0 to 30 m/s, the maximum discharge capacity increases from 30.3 to 135.5 mA.h/g for the Mg20Ni10 alloy, and from 197.2 to 406.5 mA-h/g for the Mg18La2Ni10 alloy. The capacity retaining rate (S20) of the Mg2oNi10 alloy at the 20th cycle slightly falls from 36.7% to 27.1%, but it markedly mounts up from 37.3% to 78.3% for the Mg18La2Ni10 alloy. 展开更多
关键词 Mg2Ni-type hydrogen storage alloy MELT-SPINNING STRUCTURE electrochemical performance
下载PDF
Influences of substituting Ni with M(M=Cu,Co,Mn)on gaseous and electrochemical hydrogen storage kinetics of Mg_(20)Ni_(10) alloys 被引量:3
18
作者 张羊换 杨泰 +3 位作者 翟亭亭 尚宏伟 张国芳 赵栋梁 《Journal of Central South University》 SCIE EI CAS 2014年第5期1705-1713,共9页
In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4... In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn). 展开更多
关键词 Mg2Ni-type alloy element substitution nanocrystalline and amorphous hydrogen storage kinetics
下载PDF
Hydrogen storage performances of as-milled REMg_(11)Ni(RE=Y, Sm) alloys catalyzed by MoS_2 被引量:2
19
作者 Yang-huan ZHANG Wei ZHANG +4 位作者 Ze-ming YUAN Wen-gang BU Yan QI Xiao-ping DONG Shi-hai GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1828-1837,共10页
To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these allo... To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these alloys were measured by various methods,such as XRD,TEM,automatic Sievert apparatus,TG and DSC.The results reveal that both of the as-milled alloys exhibit a nanocrystalline and amorphous structure.The RE=Y alloy shows a larger hydrogen absorption capacity,faster hydriding rate,lower initial hydrogen desorption temperature,superior hydrogen desorption property,and lower hydrogen desorption activation energy,which is thought to be the reason of its better hydrogen storage kinetics,as compared with RE=Sm alloy. 展开更多
关键词 Mg-based alloy ball milling CATALYST rare earth element hydrogen storage performance
下载PDF
An Investigation on Hydrogen Storage Kinetics of the Nanocrystalline and Amorphous LaMg12-type Alloys Synthesized by Mechanical Milling 被引量:2
20
作者 张羊换 WANG Jinglong +3 位作者 ZHANG Peilong ZHU Yongguo HOU Zhonghui SHANG Hongwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期278-287,共10页
Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydroge... Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydrogen storage kinetics of as-milled alloys were investigated systematically. The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system. And the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter(DSC) connected with a H_2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. It is found that the increase of Ni content significantly improves the gaseous and electrochemical hydrogen storage kinetic performances of as-milled alloys. Furthermore, as ball milling time changes, the maximum of both high rate discharge ability(HRD) and the gaseous hydriding rate of as-milled alloys can be obtained. But the hydrogen desorption kinetics of alloys always increases with the extending of milling time. Moreover, the improved gaseous hydrogen storage kinetics of alloys are ascribed to a decrease in the hydrogen desorption activation energy caused by increasing Ni content and milling time. 展开更多
关键词 LaMg12 alloy mechanical milling activation energy hydrogen storage kinetics
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部