期刊文献+
共找到1,271篇文章
< 1 2 64 >
每页显示 20 50 100
Numerical Simulation of Turbulent Diffusion Flames of a Biogas Enriched with Hydrogen
1
作者 Naima Krarraz Amina Sabeur +1 位作者 Khadidja Safer Ahmed Ouadha 《Fluid Dynamics & Materials Processing》 EI 2024年第1期79-96,共18页
Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective... Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective utilization in practical applications relatively difficult.The present study considers the addition of hydrogen as a potential solution to mitigate this issue.In particular,the properties of turbulent diffusion jet flames and the related pollutant emissions are investigated numerically for different operating pressures.The related numerical simulations are conducted by solving the RANS equations in the frame of the Reynolds Stress Model in combination with the flamelet approach.Radiation effects are also taken into account and the combustion kinetics are described via the GRI-Mech 3.0 reaction model.The considered hydrogen fuel enrichment spans the range from 0%to 50%in terms of volume.Pressure varies between 1 and 10 atm.The results show that both hydrogen addition and pressure increase lead to an improvement in terms of mixing quality and have a significant effect on flame temperature and height.They also reduce CO_(2) emissions but increase NOx production.Prompt NO is shown to be the predominant NO formation mechanism. 展开更多
关键词 BIOGAS hydrogen diffusion flame TURBULENCE NO formation route PRESSURE
下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
2
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
下载PDF
Flame behavior, shock wave, and instantaneous thermal field generated by unconfined vapor-liquid propylene oxide/air cloud detonation
3
作者 Cong-liang Ye Qing-lei Du +1 位作者 Li-juan Liu Qi Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期18-32,共15页
Energy output and heating effects are essential for vapor-liquid fuel/air cloud detonation in the fuel-air explosive(FAE) applications or explosion accidents. The purpose of this study is to examine the dynamic large-... Energy output and heating effects are essential for vapor-liquid fuel/air cloud detonation in the fuel-air explosive(FAE) applications or explosion accidents. The purpose of this study is to examine the dynamic large-size flame behavior, shock wave propagation law, and instantaneous thermal field generated by unconfined vapor-liquid propylene oxide(PO)/air cloud detonation. Based on computational fluid dynamics(CFD) and combustion theory, a numerical simulation is used to study the detonation process of a PO/air cloud produced by a double-event fuel-air explosive(DEFAE) of 2.16 kg. The large-scale flame behavior is characterized. The flame initially spreads radially and laterally in a wing shape. Subsequently,the developed flame increases with a larger aspect ratio. Moreover, the propagation laws of shock waves at different heights are discussed. The peak pressure of 1.3 m height level with a stepwise decline is obviously different from that of the ground with an amplitude of reversed ’N’ shape. In the vast majority of the first 6.9 m, the destructive effect of the shock wave near the ground is greater than that of the shock wave at 1.3 m height. Furthermore, the dynamic instantaneous isothermal field is demonstrated.The scaling relationship of various isotherms in the instantaneous thermal field with the flame and initial cloud is summarized. The comprehensive numerical model used in this study can be applied to determine the overpressure and temperature distribution in the entire fuel/air cloud detonation field,providing guidance for assessing the extent of damage caused by DEFAE detonation. 展开更多
关键词 Numerical simulation Fuel-air explosive Fuel/air cloud flame Shock wave Thermal field
下载PDF
Air-condition process for scalable fabrication of CdS/ZnS 1D/2D heterojunctions toward efficient and stable photocatalytic hydrogen production
4
作者 Dongdong Zhang Jie Teng +7 位作者 Hongli Yang Zhi Fang Kai Song Lin Wang Huilin Hou Xianlu Lu Chris RBowen Weiyou Yang 《Carbon Energy》 SCIE CSCD 2023年第7期1-14,共14页
We report the scalable fabrication of CdS/ZnS 1D/2D heterojunctions under ambient air conditions(i.e.,room temperature and atmospheric pressure)in which ZnS nanoparticles are anchored on the surface of CdS nanosheets.... We report the scalable fabrication of CdS/ZnS 1D/2D heterojunctions under ambient air conditions(i.e.,room temperature and atmospheric pressure)in which ZnS nanoparticles are anchored on the surface of CdS nanosheets.The as-formed heterojunctions exhibit a significantly enhanced photocatalytic H_(2) evolution rate of 14.02 mmol h^(-1) g^(-1) when irradiated with visible light,which is~10 and 85 times higher than those of pristine CdS nanosheets and CdS nanoparticles,respectively,and superior to most of the CdS-based photocatalysts reported to date.Furthermore,they provide robust photocatalytic performance with demonstratable stability over 58 h,indicating their potential for practical applications.The formation of 1D/2D heterojunctions not only provides improved exposed active sites that respond to illumination but also provides a rapid pathway to generate photogenerated carriers for efficient separation and transfer through the matrix of single-crystalline CdS nanosheets.In addition,first-principles simulations demonstrate that the existence of rich Zn vacancies increases the energy level of the ZnS valence band maximum to construct type-II and Z-scheme mixed heterojunctions,which plays a critical role in suppressing the recombination of carriers with limited photocorrosion of CdS to enhance photocatalytic behavior. 展开更多
关键词 air condition CDS HETEROJUNCTIONS photocatalytic hydrogen production ZNS
下载PDF
A Natural Catalytic Converter® for Continuously Inactivating Air and Surface Pathogens with More Effect than Ventilation and Filtration
5
作者 Margaret Scarlett Brett Duffy 《Open Journal of Applied Sciences》 2024年第5期1353-1363,共11页
Study Objective: The purpose of the study is to present independent laboratory testing for a novel technology in air and on surfaces. Since 2020, public health goals have focused on improving indoor air quality. This ... Study Objective: The purpose of the study is to present independent laboratory testing for a novel technology in air and on surfaces. Since 2020, public health goals have focused on improving indoor air quality. This includes protection from airborne pathogens, such as tuberculosis, RSV, SARS-CoV-2, common cold or influenza viruses, measles, and others. Engineering controls are highly effective at reducing hazardous pathogens found in indoor air and from recontamination of surfaces. This occurs from a continuous cycle of settling of small, sustained airborne pathogens, which may become dehumidified, becoming airborne again, carried by room air currents around indoor spaces, then repeating the cycle. Methods: The novel technology utilizes a catalytic process to produce safe levels of hydrogen peroxide gas that are effective in reducing pathogens in the air and on surfaces. Air testing was performed with the MS2 bacteriophage, the test organism for ASHRAE standard 241, and methicillin-Resistant Staphylococcus aureus (MRSA). Surface testing was performed with SARS-COV-2 (Coronavirus COVID-19) and H1N1 (Influenza). Typical ventilation and filtration does not effectively remove disbursed pathogens from the entire facility, due to inconsistent air circulation and surface deposits of pathogens. Results: MS2 was reduced by 99.9%;MRSA was reduced by 99.9%;SARS-CoV-2 was reduced by 99.9%;H1N1 was reduced by 99.9%. Conclusion: This novel catalytic converter reduces a variety of pathogens in the air (99%) and on surfaces (99%), by actively disinfecting with the introduction of gaseous hydrogen peroxide. This active disinfection provides a strong solution for protecting the entire facility and its occupants. 展开更多
关键词 PATHOGEN Bacteria Virus Reduction Gaseous hydrogen Peroxide DISINFECTION Indoor air Quality SURFACE
下载PDF
Numerical Simulation of High Temperature Air Combustion Flames Properties 被引量:4
6
作者 YANG Wei-hong JIANG Shao-jiang +1 位作者 HSIAO Tse-chiang YANG Li-xing 《Journal of Central South University》 SCIE EI CAS 2000年第3期156-158,共3页
High temperature air combustion (HTAC) is an attractive technology of saving energy and controlling environment. The mathematical models of turbulent jet flame under the highly preheated air combustion condition are c... High temperature air combustion (HTAC) is an attractive technology of saving energy and controlling environment. The mathematical models of turbulent jet flame under the highly preheated air combustion condition are conducted in the paper. The mixture fraction/probability density function model is employed. The results show that the maximum flame temperature is decreased, the temperature in the HTAC furnace is more uniform than that in the conventional furnace, and the NO x emission is low. The numerical results are partially validated by some experimental measurements. 展开更多
关键词 high temperature air COMBUSTION NUMERICAL simulation flame low oxgen
下载PDF
Prediction of Excess Air Factor in Automatic Feed Coal Burners by Processing of Flame Images 被引量:1
7
作者 Muhammed Fatih TALU Cem ONAT Mahmut DASKIN 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期722-731,共10页
In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be o... In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be obtained using very expensive air measurement instruments. The proposed method to predict ) for a specific time in the coal burners consists of three distinct and consecutive stages; a) online flame images acquisition using a CCD camera, b) extrac- tion meaningful information (flame intensity and bright- ness)from flame images, and c) learning these information (image features) with ANNs and estimate 2. Six different feature extraction methods have been used: CDF of Blue Channel, Co-Occurrence Matrix, L-Frobenius Norms, Radiant Energy Signal (RES), PCA and Wavelet. When compared prediction results, it has seen that the use of co- occurrence matrix with ANNs has the best performance (RMSE = 0.07) in terms of accuracy. The results show that the proposed predicting system using flame images can be preferred instead of using expensive devices to measure excess air factor in during combustion. 展开更多
关键词 Excess air factor flame images Coal burner
下载PDF
A PROSPECTIVE HYDROGEN STORAGE ALLOY PAIR FOR BUS AIR CONDITIONERS 被引量:1
8
作者 Wang Xinhua and Chen Changpin Department of Materials Science and Engineering,Zhejiang University, Hangzhou 310027, P. R. China 《中国有色金属学会会刊:英文版》 CSCD 1998年第1期57-60,共4页
APROSPECTIVEHYDROGENSTORAGEALLOYPAIRFORBUSAIRCONDITIONERS①WangXinhuaandChenChangpinDepartmentofMaterialsScie... APROSPECTIVEHYDROGENSTORAGEALLOYPAIRFORBUSAIRCONDITIONERS①WangXinhuaandChenChangpinDepartmentofMaterialsScienceandEnginering,... 展开更多
关键词 hydride hydrogen STORAGE ALLOY BUS heat pump air CONDITIONER
下载PDF
Design and Key Technology of Oil-Free Centrifugal Air Compressor for Hydrogen Fuel Cell 被引量:1
9
作者 Hongjie Zhang Wenfei Yu Wei Hua 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第1期11-19,共9页
For a 120 kW hydrogen fuel cell system,a centrifugal air compressor with fixed power of 22 kW fuel cell is designed.Firstly,the theoretical calculation is carried out for the aerodynamic characteristics of a ultra-hig... For a 120 kW hydrogen fuel cell system,a centrifugal air compressor with fixed power of 22 kW fuel cell is designed.Firstly,the theoretical calculation is carried out for the aerodynamic characteristics of a ultra-high-speed permanent magnet synchronous motor,an air compressor,and an aerodynamic foil bearing.Then,a prototype is trial-produced and a related test bench is built for test verification.Finally,both the simulation and test results indicate that the designed centrifugal air compressor meets the overall requirements of the hydrogen fuel cell system,and the relevant conclusions provide both theoretical and experimental references for the subsequent series development and design of the centrifugal air compressor. 展开更多
关键词 hydrogen fuel cell Centrifugal air compressor Ultra-High speed permanent magnet synchronous motor Compressor impeller air pressure foil bearing
下载PDF
Flame Propagation Characteristics of Propane-Air Mixture in Ducts with Obstacles 被引量:2
10
作者 卢捷 王成 宁建国 《Journal of Beijing Institute of Technology》 EI CAS 2004年第4期394-397,共4页
An experimental study on acceleration mechanism of flame propagation of propane-air mixture in ducts with obstacles was conducted. The acceleration mechanism of flame propagation is mainly due to the positive feedback... An experimental study on acceleration mechanism of flame propagation of propane-air mixture in ducts with obstacles was conducted. The acceleration mechanism of flame propagation is mainly due to the positive feedback of the turbulence region induced by obstacles for combustion process. It can be seen from the experimental results that the maximum explosion pressure can increase by 20%, the maximum rate of pressure rise can increase by 10 times and the flame propagation velocity can increase by 20 times when obstacles are present. 展开更多
关键词 gas explosion propane-air mixture flame propagation blockage ratio
下载PDF
Annealing effect and stability of carbon nanotubes in hydrogen flame
11
作者 Jing-quan Deng, Peng-liang Hou Chuzhou University, Anhui 239000,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第1期46-48,共3页
Annealing of carbon nanotubes (CNTs) by the hydrogen flame in air was investigated in this study. Raman spectroscopy and scanning electron microscopy were used to characterize the products. The peak width of Raman spe... Annealing of carbon nanotubes (CNTs) by the hydrogen flame in air was investigated in this study. Raman spectroscopy and scanning electron microscopy were used to characterize the products. The peak width of Raman spectra decreased with the increase in the annealing time. The CNTs were not stable in the hydrogen flame and the etching rate of the CNTs by hydrogen flame was very high. The hydrogen flame annealing had some effects on improving the crystallinity of CNTs. 展开更多
关键词 carbon nanotubes ANNEALING hydrogen flame
下载PDF
Hydrogen Engine and Numerical Temperature-Entropy Chart for Hydrogen/Air Cycle Analysis
12
作者 Elsayed M. Marzouk Hamza A. Ghulman 《Energy and Power Engineering》 2015年第9期375-383,共9页
Fast depletion of fossil fuels with its resources already passed its mid depletion region and the pollution levels already reached unsafe levels which make it utmost necessity to search for alternative fuels to meet s... Fast depletion of fossil fuels with its resources already passed its mid depletion region and the pollution levels already reached unsafe levels which make it utmost necessity to search for alternative fuels to meet sustainable energy demand with minimum environmental impact. Among alternative fuels, hydrogen is considered as the near future, long term renewable, sustainable and non-polluting fuel. In the present paper, hydrogen fueled internal combustion engine fundamentals highlighted and presented relating to hydrogen combustion properties. A Mat lab programmed hydrogen temperature-entropy-energy chart is developed and presented for fresh charge and products of combustion at different excess air factors per mole combustion gases. The chart, then, used to represent a SI hydrogen-fueled fuel/air cycle analysis, which proved to be valuable design tool for engine sizing and for prediction of engine performance. Predictions carried out using the hydrogen F/A cycle analysis at different λ show low brake specific fuel consumption and low volume specific power compared with conventional SI engine. 展开更多
关键词 hydrogen ENGINE H2-Combustion Properties H2-Fueled SI ENGINE Temperature-Entropy CHART Fuel/air Cycle Analysis
下载PDF
Structure and Combustion Characteristics of Methane/Air Premixed Flame under the Action of Wall
13
作者 Feiyang Li Jianfeng Pan +2 位作者 Chenxin Zhang Evans K.Quaye Xia Shao 《Energy Engineering》 EI 2021年第4期1135-1154,共20页
In order to obtain the combustion characteristics of the CH4/Air premixed flame under the action of the wall interaction,a study on the impact of the jet flame on the wall at different separation distances was carried... In order to obtain the combustion characteristics of the CH4/Air premixed flame under the action of the wall interaction,a study on the impact of the jet flame on the wall at different separation distances was carried out.The separation distance from the burner outlet to the lower surface of the wall is changed and the flame structure is obtained through experiments.The temperature,velocity and reaction rate are obtained through numerical simulation,and the law of flame characteristics change is obtained through analysis.The results show that as the separation distance increases,the premixing cone inside the flame gradually changes from a horn shape to a complete cone shape and the length of the premixing cone profile increases.Also,the peak temperature and velocity of the mixture in the axial direction gradually increase,and the temperature and velocity in the radial direction first increase and then decrease.The temperature gradient and velocity reach the maximum when the separation distance is 11 mm.The peaks of reactants(CH_(4))net reaction rate intermediate products(CO)and products(CO_(2),H_(2)O)on the axis and the axial distance corresponding to the peaks increase accordingly.The chemical reaction rate near the wall also gradually decreases with the increase of the separation distance. 展开更多
关键词 flame-wall interaction separation distance flame structure air flow temperature flow velocity reaction rate
下载PDF
Experimental investigation on microstructure behavior of premixed methane-air flame-flow interaction in a semi-vented chamber
14
作者 任少峰 王玉杰 +1 位作者 陈先锋 陈明 《Journal of Beijing Institute of Technology》 EI CAS 2011年第3期301-305,共5页
To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods w... To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods were used to record the processes of interaction between rare- faction wave and flame. Meanwhile, a pressure sensor was utilized to catch the pressure variation in the process of flame propagation. The experiment results showed that the interference of rarefaction wave on flame caused the flame front structure change, which led to the flame transition from lami- nar to turbulent quickly. The rarefaction wave intervened in the flame by turning the flame front sur- face into dentiform structure. The violent turbulent combustion began to appear in part of the flame front and spreaded to the whole flame front surface. The rarefaction also decreased the flame propa- gation speed. 展开更多
关键词 methane-air flame micro-structure flame propagation laminax-turbulent combustion
下载PDF
Laminar Diffusion Flames of Methane in a Co-annular Jet of Oxygen-Enriched Air
15
作者 Pascale Gillon May Chahine Brahim Sarh 《Journal of Energy and Power Engineering》 2013年第1期32-40,共9页
关键词 富氧空气 扩散火焰 环形射流 甲烷 烟尘排放量 氧化剂 富氧燃烧 能源效率
下载PDF
Study and Application of W-Flame Boiler Startup Aided by Adjacent Hot Primary Air
16
作者 Hou Zhaoyi Qiu Xiantang Du Huazhong 《Electricity》 2012年第3期34-38,共5页
In this paper,the designed features of a W-flame coal-fired boiler are introduced.A scheme of joint primary air for two boilers is made and technical measures are also taken based on corresponding analyses and studies... In this paper,the designed features of a W-flame coal-fired boiler are introduced.A scheme of joint primary air for two boilers is made and technical measures are also taken based on corresponding analyses and studies.The scheme and the measures provide a reference for technicians to improve the efficiencies and reduce the startup costs of other similar large boilers. 展开更多
关键词 锅炉启动 W火焰 一次风 应用 技术人员 设计特点 燃煤锅炉 大型锅炉
下载PDF
Venous Air Embolism Following the Use of Hydrogen Peroxide during Posterior Fossa Surgery in the Sitting Position
17
作者 Zhen-dong Xu Wei-min Liang 《麻醉与监护论坛》 2012年第5期377-379,共3页
关键词 过氧化氢 手术过程 栓塞 空气 静脉 手术治疗 外科病 VAE
下载PDF
A Hybrid Aluminum/Hydrogen/Air CellmCommon Cathode
18
作者 Lei Wang Fude Liu +3 位作者 Wentao Wang Dawei Zheng Huizhi Wang Michael Kow-Hi Leung 《Journal of Energy and Power Engineering》 2014年第11期1889-1894,共6页
关键词 空气电池 氢气 阴极 微型燃料电池 串联系统 混合 最大功率输出
下载PDF
新能源用钢管的应用现状、需求分析及思考 被引量:1
19
作者 张忠铧 刘传森 +2 位作者 齐亚猛 朱文琪 赵永安 《钢管》 CAS 2024年第1期1-15,共15页
“双碳”战略下新能源及相关产业发展给钢管带来新的应用场景,对钢管的功能和性能提出新的需求。聚焦于碳捕获、利用与封存技术领域中的CO_(2)输送用管、氢能领域中的氢气输送用管和储能领域中的盐穴压缩空气储能用注采管,总结了新能源... “双碳”战略下新能源及相关产业发展给钢管带来新的应用场景,对钢管的功能和性能提出新的需求。聚焦于碳捕获、利用与封存技术领域中的CO_(2)输送用管、氢能领域中的氢气输送用管和储能领域中的盐穴压缩空气储能用注采管,总结了新能源用钢管的应用现状和研究进展,分析了各领域用管需求,并就“双碳”背景下新能源用钢管的基础理论研究、关键技术开发和标准体系建设等方面进行了思考,提出了建议。 展开更多
关键词 钢管 CO_(2)输送 氢气输送 盐穴压缩空气储能 应用现状 需求分析
下载PDF
焦磷酸三聚氰胺与聚乙烯醇分子之间的氢键相互作用提高聚乙烯醇水凝胶薄膜的阻燃性能
20
作者 许家友 罗敏仪 吕澍 《广州大学学报(自然科学版)》 CAS 2024年第2期73-83,共11页
文章通过聚乙烯醇(PVA)与硼酸(H_(3)BO_(3))交联制备成水凝胶薄膜,添加焦磷酸三聚氰胺(MPP)提高PVA/MPP复合水凝胶薄膜的阻燃性能,当添加20 wt%MPP时,PVA阻燃性能达到UL-94 V-0级,MPP的加入可有效降低水凝胶薄膜的热释放速度(HRR)和发... 文章通过聚乙烯醇(PVA)与硼酸(H_(3)BO_(3))交联制备成水凝胶薄膜,添加焦磷酸三聚氰胺(MPP)提高PVA/MPP复合水凝胶薄膜的阻燃性能,当添加20 wt%MPP时,PVA阻燃性能达到UL-94 V-0级,MPP的加入可有效降低水凝胶薄膜的热释放速度(HRR)和发烟量。实验结果表明,MPP与PVA分子之间的氢键相互作用可以保持材料的力学性能,提高材料的阻燃性能。PVA/MPP水凝胶膜的阻燃机理是气相与凝聚相阻燃机理的协同作用,MPP分解为三聚氰胺和磷酸,然后三聚氰胺转化为N_(2)和CO_(2),磷酸促进PVA水凝胶形成连续致密的炭层,阻碍了与外界的氧气和热量交换。 展开更多
关键词 聚乙烯醇 焦磷酸三聚氰胺 凝胶 氢键 阻燃
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部