期刊文献+
共找到3,588篇文章
< 1 2 180 >
每页显示 20 50 100
In situ infrared, Raman and X-ray spectroscopy for the mechanistic understanding of hydrogen evolution reaction
1
作者 Andi Haryanto Kyounghoon Jung +1 位作者 Chan Woo Lee Dong-Wan Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期632-651,I0014,共21页
Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely use... Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER. 展开更多
关键词 hydrogen evolution reaction Infrared spectroscopy Raman spectroscopy X-ray absorption spectroscopy reaction mechanism
下载PDF
Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction
2
作者 Jing Jin Xinyao Wang +4 位作者 Yang Hu Zhuang Zhang Hongbo Liu Jie Yin Pinxian Xi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期14-24,共11页
Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performan... Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy. 展开更多
关键词 hydrogen evolution reaction S vacancies NANOSHEET H Adsorption
下载PDF
Exploring the Cation Regulation Mechanism for Interfacial Water Involved in the Hydrogen Evolution Reaction by In Situ Raman Spectroscopy
3
作者 Xueqiu You Dongao Zhang +4 位作者 Xia‑Guang Zhang Xiangyu Li Jing‑Hua Tian Yao‑Hui Wang Jian‑Feng Li 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期303-312,共10页
Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.U... Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.Unfortunately,investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment.Here,the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry,in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques.Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction.When comparing the different cation electrolyte systems at a given potential,the frequency of the interfacial water peak increases in the specified order:Li+<Na^(+)<K^(+)<Ca^(2+)<Sr^(2+).The structure of interfacial water was optimized by adjusting the radius,valence,and concentration of cation to form the two-H down structure.This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance.Therefore,local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure. 展开更多
关键词 In situ Raman Interfacial water hydrogen evolution reaction CATIONS
下载PDF
Atomic-level coupled RuO_(2)/BaRuO_(3) heterostructure for efficient alkaline hydrogen evolution reaction
4
作者 Yueying Yan Tian Meng +4 位作者 Yuting Chen Yang Yang Dewen Wang Zhicai Xing Xiurong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期356-362,I0009,共8页
The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy b... The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy barrier of water dissociation and regulating the binding strength of adsorption intermediates are crucial strategy for boosting the catalytic performance of HER.In this study,RuO_(2)/BaRuO_(3)(RBRO)heterostructures with abundant oxygen vacancies and lattice distortion were in-situ constructed under a low temperature via the thermal decomposition of gel-precursor.The RBRO heterostructures obtained at 550℃ exhibited the highest HER activity in 1 M KOH,showing an ultra-low overpotential of 16 mV at 10 mA cm^(-2)and a Tafel slope of 33.37 m V dec^(-1).Additionally,the material demonstrated remarkable durability,with only 25 mV of degradation in overpotential after 200 h of stability testing at 10 mA cm^(-2).Density functional theory calculations revealed that the redistribution of charges at the heterojunction interface can optimize the binding energies of H*and OH*and effectively lower the energy barrier of water dissociation.This research offers novel perspectives on surpassing the water dissociation threshold of alkaline HER catalysts by means of a systematic design of heterogeneous interfaces. 展开更多
关键词 HETEROSTRUCTURE hydrogen evolution reaction Interfacial electron transfer Oxygen vacancies
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction
5
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility hydrogen evolution reaction
下载PDF
Fundamental Understanding of Hydrogen Evolution Reaction on Zinc Anode Surface:A First‑Principles Study
6
作者 Xiaoyu Liu Yiming Guo +6 位作者 Fanghua Ning Yuyu Liu Siqi Shi Qian Li Jiujun Zhang Shigang Lu Jin Yi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期180-191,共12页
Hydrogen evolution reaction(HER)has become a key factor affecting the cycling stability of aqueous Zn-ion batteries,while the corresponding fundamental issues involving HER are still unclear.Herein,the reaction mechan... Hydrogen evolution reaction(HER)has become a key factor affecting the cycling stability of aqueous Zn-ion batteries,while the corresponding fundamental issues involving HER are still unclear.Herein,the reaction mechanisms of HER on various crystalline surfaces have been investigated by first-principle calculations based on density functional theory.It is found that the Volmer step is the ratelimiting step of HER on the Zn(002)and(100)surfaces,while,the reaction rates of HER on the Zn(101),(102)and(103)surfaces are determined by the Tafel step.Moreover,the correlation between HER activity and the generalized coordination number(CN)of Zn at the surfaces has been revealed.The relatively weaker HER activity on Zn(002)surface can be attributed to the higher CN of surface Zn atom.The atomically uneven Zn(002)surface shows significantly higher HER activity than the flat Zn(002)surface as the CN of the surface Zn atom is lowered.The CN of surface Zn atom is proposed as a key descriptor of HER activity.Tuning the CN of surface Zn atom would be a vital strategy to inhibit HER on the Zn anode surface based on the presented theoretical studies.Furthermore,this work provides a theoretical basis for the in-depth understanding of HER on the Zn surface. 展开更多
关键词 Aqueous Zn-ion battery Zn anode hydrogen evolution reaction Coordination number First-principles calculation
下载PDF
Insights into the hydrogen evolution reaction in vanadium redox flow batteries:A synchrotron radiation based X-ray imaging study
7
作者 Kerstin Köble Alexey Ershov +7 位作者 Kangjun Duan Monja Schilling Alexander Rampf Angelica Cecilia TomášFaragó Marcus Zuber Tilo Baumbach Roswitha Zeis 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期132-144,共13页
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo... The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems. 展开更多
关键词 Vanadium redox flow battery Synchrotron X-ray imaging Tomography hydrogen evolution reaction Gas bubbles Deep learning
下载PDF
Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions 被引量:3
8
作者 Changshui Wang Qian Zhang +7 位作者 Bing Yan Bo You Jiaojiao Zheng Li Feng Chunmei Zhang Shaohua Jiang Wei Chen Shuijian He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期97-137,共41页
The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality... The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed. 展开更多
关键词 Crystal facet engineering ANISOTROPY Oxygen evolution reaction hydrogen evolution reaction Theoretical simulations
下载PDF
General approach for atomically dispersed precious metal catalysts toward hydrogen reaction 被引量:2
9
作者 Ruisong Li Daoxiong Wu +8 位作者 Peng Rao Peilin Deng Jing Li Junming Luo Wei Huang Qi Chen Zhenye Kang Yijun Shen Xinlong Tian 《Carbon Energy》 SCIE CSCD 2023年第7期100-111,共12页
As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with hig... As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with high atomic utilization open up a desirable perspective for the scale applications of precious metals,but the general and facile preparation of various precious metal-based SACs remains challenging.Herein,a general movable printing method has been developed to synthesize various precious metal-based SACs,such as Pd,Pt,Rh,Ir,and Ru,and the features of highly dispersed single atoms with nitrogen coordination have been identified by comprehensive characterizations.More importantly,the synthesized Pt-and Ru-based SACs exhibit much higher activities than their corresponding nanoparticle counterparts for hydrogen oxidation reaction and hydrogen evolution reaction(HER).In addition,the Pd-based SAC delivers an excellent activity for photocatalytic hydrogen evolution.Especially for the superior mass activity of Ru-based SACs toward HER,density functional theory calculations confirmed that the adsorption of the hydrogen atom has a significant effect on the spin state and electronic structure of the catalysts. 展开更多
关键词 hydrogen evolution reaction hydrogen oxidation reaction photocatalytic hydrogen evolution reaction precious metals single-atom catalysts
下载PDF
Carbon Doping Triggered Efficient Electrochemical Hydrogen Evolution of Cross-Linked Porous Ru-MoO_(2) Via Solid-Phase Reaction Strategy 被引量:1
10
作者 Jialin Cai Jianye Yang +7 位作者 Xin Xie Jie Ding Leyan Liu Wanyu Tian Yushan Liu Zhiyong Tang Baozhong Liu Siyu Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期392-400,共9页
The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution r... The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution reaction(HER).Carbon doping engineering is an attractive strategy to effectively improve the performance of Mo-based catalyst and maintain their stability.Herein,we report a cross-linked porous carbon-doped MoO_(2)(C–MoO_(2))-based catalyst Ru/C–MoO_(2) for electrochemical HER,which is prepared by the convenient redox solid-phase reaction(SPR)of porous RuO_(2)/Mo_(2)C composite precursor.Theoretical studies reveal that due to the presence of carbon atoms,the electronic structure of C–MoO_(2) has been properly adjusted,and the loaded small Ru nanoparticles provide a fast water dissociation rate and moderate H adsorption strength.In electrochemical studies under a pH-universal environment,Ru/C–MoO_(2) electrocatalyst exhibits a low overpotential at a current density of 10 mA cm^(-2) and has a low Tafel slope.Meanwhile,Ru/C-MoO_(2) has excellent stability for more than 100 h at an initial current density of 100 mA cm^(-2). 展开更多
关键词 carbon doped hydrogen evolution reaction macro-meso-micropore MoO_(2) RU solid-phase reaction
下载PDF
Co-Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction 被引量:1
11
作者 Huizhen Wang Pengfei Yang +9 位作者 Xiaoyuan Sun Weiping Xiao Xinping Wang Minge Tian Guangrui Xu Zhenjiang Li Yubing Zhang Fusheng Liu Lei Wang Zexing Wu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期286-294,I0008,共10页
Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of re... Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials. 展开更多
关键词 ELECTROCATALYST 2D Carbon nanosheet hydrogen/oxygen evolution reaction Oxygen reduction reaction WATER-SPLITTING
下载PDF
Construction of Ru/WO3 with hetero-interface structure for efficient hydrogen evolution reaction 被引量:1
12
作者 Xin Xie Yunxiao Fan +6 位作者 Wanyu Tian Meng Zhang Jialin Cai Xingang Zhang Jie Ding Yushan Liu Siyu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期150-157,I0006,共9页
Water electrolysis is considered as one most promising technique for hydrogen production.The high efficiency electrocatalyst is the key to accelerating the sluggish kinetics of the hydrogen evolution reaction(HER) in ... Water electrolysis is considered as one most promising technique for hydrogen production.The high efficiency electrocatalyst is the key to accelerating the sluggish kinetics of the hydrogen evolution reaction(HER) in alkaline media.In this work,an efficient HER electrocatalyst with hetero-interfacial metal-metal oxide structure was constructed through a redox solid phase reaction(SPR) strategy.During the annealing process under Ar atmosphere,RuO_(2) and WS_(2)in RuO_(2)/WS_(2)precursor were converted to Ru nanoparticles(NPs) and WO3in situ,where tiny Ru NPs and oxygen vacancies were uniformly distributed onto the newly formed WO3nanosheets.Different characterization techniques were adopted to confirm the successful formation of Ru/WO_(3)electrocatalyst(RWOC).The optimized RWOC sample annealed at 400℃ exhibited the low overpotential value of 13 mV at a current density of 10 mA cm^(-2)and strong durability under the alkaline condition.Density functional theoretical calculations further revealed that the promoted adsorption/desorption rate of reaction intermediates and the accelerated kinetics of HER process were deduced to the synergistic effect between Ru and WO_(3)in electrocatalyst.This work provides a feasible method to fabricate highly efficient HER electrocatalysts. 展开更多
关键词 RU WO_(3) Hetero-interface hydrogen evolution reaction ELECTROCATALYST
下载PDF
Adjusting oxygen vacancies in perovskite LaCoO_(3)by electrochemical activation to enhance the hydrogen evolution reaction activity in alkaline condition 被引量:1
13
作者 Chengrong Wu Yan Sun +4 位作者 Xiaojian Wen Jia-Ye Zhang Liang Qiao Jun Cheng Kelvin H.L.Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期226-232,I0006,共8页
Developing highly-active,earth-abundant non-precious-metal catalysts for hydrogen evolution reaction(HER)in alkaline solution would be beneficial to sustainable energy storage.Perovskite oxides are generally regarded ... Developing highly-active,earth-abundant non-precious-metal catalysts for hydrogen evolution reaction(HER)in alkaline solution would be beneficial to sustainable energy storage.Perovskite oxides are generally regarded as low-active HER catalysts,due to their inapposite hydrogen adsorption and water dissociation.Here,we report a detailed study on perovskite LaCoO_(3)epitaxial thin films as a model catalyst to significantly enhance the HER performance via an electrochemical activation process.As a result,the overpotential for the activation films to achieve a current density of 0.36 m A/cm^(2)is 238 m V,reduced by more than 200 m V in comparison with that of original samples.Structural characterization revealed the activation process dramatically increases the concentration of oxygen vacancies(Vo)on the surface of LaCoO_(3).We established the relationship between the electronic structure induced by Vo and the enhanced HER activity.Further theoretical calculations revealed that the Vo optimizes the hydrogen adsorption and dissociation of water on the surface of LaCoO_(3)thin films,thus improving the HER catalytic activity.This work may promote a deepened understanding of perovskite oxides for HER mechanism by Vo adjusting and a new avenue for designing highly active electrochemical catalysts in alkaline solution. 展开更多
关键词 hydrogen evolution reaction Perovskite oxides Activation process Oxygen vacancies
下载PDF
Defect-engineered two-dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction 被引量:1
14
作者 Hang Su Xiaodong Pan +2 位作者 Suqin Li Hao Zhang Ruqiang Zou 《Carbon Energy》 SCIE CSCD 2023年第6期21-44,共24页
Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engin... Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engineering strategies,including intrinsic defects(atomic vacancy and active edges)and extrinsic defects(metal doping,nonmetal doping,and hybrid doping),which have been utilized to obtain advanced TMD-based electrocatalysts.Based on theoretical simulations and experimental results,the electronic structure,intermediate adsorption/desorption energies and possible catalytic mechanisms are thoroughly discussed.Particular emphasis is given to the intrinsic relationship between various types of defects and electrocatalytic properties.Furthermore,current opportunities and challenges for mechanical investigations and applications of defective TMD-based catalysts are presented.The aim herein is to reveal the respective properties of various defective TMD catalysts and provide valuable insights for fabricating high-efficiency TMD-based electrocatalysts. 展开更多
关键词 defect engineering ELECTROCATALYSTS hydrogen evolution reaction(HER) transition metal dichalcogenides
下载PDF
MoNi_(4)-NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction 被引量:1
15
作者 Yanlin Qin Yunzhen Chen +4 位作者 Xuezhi Zeng Yingchun Liu Xuliang Lin Wenli Zhang Xueqing Qiu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1728-1736,共9页
Molybdenum nickel alloy has been proved to be an efficient noble-metal-free catalyst for hydrogen evolution reaction(HER) in alkaline medium, but its electrocatalytic activity and stability need to be further improved... Molybdenum nickel alloy has been proved to be an efficient noble-metal-free catalyst for hydrogen evolution reaction(HER) in alkaline medium, but its electrocatalytic activity and stability need to be further improved to meet industrial requirements. In this study, carboxymethylated enzymatic hydrolysis lignin(EHL) was used as a biomacromolecule frame to coordinate with transition metal ions and reduced by pyrolysis to obtain the MoNi_(4)-NiO heterojunction(MoNi_(4)-NiO/C). The oblate sphere structure of MoNi_(4)-NiO/C exposed a large catalytic active surface to the electrolyte. As a result, the hydrogen evolution reaction of MoNi_(4)-NiO/C displayed a low overpotentials of 41 mV to achieve 10 mA cm-2and excellent stability of 100 h at 100 mA cm^(-2)in 1 mol L^(-1)KOH, which was superior to that of commercial Pt/C. Lignin assisted the formation of NiO to construct the MoNi_(4)-NiO interface and MoNi_(4)-NiO heterojunction structure, which reduced the energy barrier by forming a more favorable transition states and then promoted the formation of adsorbed hydrogen at the heterojunction interface through water dissociation in alkaline media, leading to the rapid reaction kinetics. This work provided an effective strategy for improving the electrocatalytic performance of noble-metal-free electrocatalysts encapsulated by lignin-derived carbon. 展开更多
关键词 Lignin-derived carbon hydrogen evolution reaction MoNi_(4)–NiO interface ELECTROCATALYSIS
下载PDF
Novel ternary metals-based telluride electrocatalyst with synergistic effects of high valence non-3d metal and oxophilic Te for pH-universal hydrogen evolution reaction 被引量:1
16
作者 Seunghwan Jo Wenxiang Liu +5 位作者 Yanan Yue Ki Hoon Shin Keon Beom Lee Hyeonggeun Choi Bo Hou Jung Inn Sohn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期736-743,I0015,共9页
Electrocatalyst designs based on oxophilic foreign atoms are considered a promising approach for developing efficient pH-universal hydrogen evolution reaction(HER)electrocatalysts by overcoming the sluggish alkaline H... Electrocatalyst designs based on oxophilic foreign atoms are considered a promising approach for developing efficient pH-universal hydrogen evolution reaction(HER)electrocatalysts by overcoming the sluggish alkaline HER kinetics.Here,we design ternary transition metals-based nickel telluride(Mo WNi Te)catalysts consisting of high valence non-3d Mo and W metals and oxophilic Te as a first demonstration of non-precious heterogeneous electrocatalysts following the bifunctional mechanism.The Mo WNi Te showed excellent HER catalytic performance with overpotentials of 72,125,and 182 mV to reach the current densities of 10,100,and 1000 mA cm^(-2),respectively,and the corresponding Tafel slope of 47,52,and 58 mV dec-1in alkaline media,which is much superior to commercial Pt/C.Additionally,the HER performance of Mo WNi Te is well maintained up to 3000 h at the current density of 100 mA cm^(-2).It is further demonstrated that the Mo WNi Te exhibits remarkable HER activities with an overpotential of 45 mV(31 mV)and Tafel slope of 60 mV dec-1(34 mV dec-1)at 10 mA cm^(-2)in neutral(acid)media.The superior HER performance of Mo WNi Te is attributed to the electronic structure modulation,inducing highly active low valence states by the incorporation of high valence non-3d transition metals.It is also attributed to the oxophilic effect of Te,accelerating water dissociation kinetics through a bifunctional catalytic mechanism in alkaline media.Density functional theory calculations further reveal that such synergistic effects lead to reduced free energy for an efficient water dissociation process,resulting in remarkable HER catalytic performances within universal pH environments. 展开更多
关键词 Telluride catalyst Oxophilic effect High valence non-3d metal Bifunctional mechanism pH-universal hydrogen evolution reaction
下载PDF
Deep Learning Accelerates the Discovery of Two- Dimensional Catalysts for Hydrogen Evolution Reaction 被引量:1
17
作者 Sicheng Wu Zhilong Wang +2 位作者 Haikuo Zhang Junfei Cai Jinjin Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期138-144,共7页
Two-dimensional materials with active sites are expected to replace platinum as large-scale hydrogen production catalysts.However,the rapid discovery of excellent two-dimensional hydrogen evolution reaction catalysts ... Two-dimensional materials with active sites are expected to replace platinum as large-scale hydrogen production catalysts.However,the rapid discovery of excellent two-dimensional hydrogen evolution reaction catalysts is seriously hindered due to the long experiment cycle and the huge cost of high-throughput calculations of adsorption energies.Considering that the traditional regression models cannot consider all the potential sites on the surface of catalysts,we use a deep learning method with crystal graph convolutional neural networks to accelerate the discovery of high-performance two-dimensional hydrogen evolution reaction catalysts from two-dimensional materials database,with the prediction accuracy as high as 95.2%.The proposed method considers all active sites,screens out 38 high performance catalysts from 6,531 two-dimensional materials,predicts their adsorption energies at different active sites,and determines the potential strongest adsorption sites.The prediction accuracy of the two-dimensional hydrogen evolution reaction catalysts screening strategy proposed in this work is at the density-functional-theory level,but the prediction speed is 10.19 years ahead of the high-throughput screening,demonstrating the capability of crystal graph convolutional neural networks-deep learning method for efficiently discovering high-performance new structures over a wide catalytic materials space. 展开更多
关键词 crystal graph convolutional neural network deep learning hydrogen evolution reaction two-dimensional(2D)material
下载PDF
Hydrogen evolution reaction between small-sized Zr_(n)(n=2–5)clusters and water based on density functional theory
18
作者 唐雷雷 史顺平 +5 位作者 宋永 胡家宝 刁凯 蒋静 段湛江 陈德良 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期429-434,共6页
Density functional theory(DFT)is used to calculate the most stable structures of Zr_(n)(n=2-5)clusters as well as the adsorption energy values of Zr_(n)(n=2-5)clusters after adsorbing single water molecule.The results... Density functional theory(DFT)is used to calculate the most stable structures of Zr_(n)(n=2-5)clusters as well as the adsorption energy values of Zr_(n)(n=2-5)clusters after adsorbing single water molecule.The results reveal that there is a significant linear relationship between the adsorption energy values and the energy gaps of the Zr_(n)(n=2-5)clusters.Furthermore,the calculations of the reaction paths between Zr_(n)(n=2-5)and single water molecule show that water molecule can react with Zr_(n)(n=2-5)clusters to dissociate,producing hydrogen,and O atoms mix with the clusters to generate Zr_(n)O(n=2-5),all of which are exothermic reactions.According to the released energy,the Zr4 cluster is the most efficient in Zr_(n)(n=2-5)clusters reacting with single water molecule.The natural population analysis(NPA)and density of states(DOS)demonstrate the production of hydrogen and orbital properties in different energy ranges,respectively,jointly forecasting that Zr_(n)O(n=2-5)will probably continue to react with more water molecules.Our findings contribute to better understanding of Zr's chemical reactivity,which can conduce to the development of effective Zr-based catalysts and hydrogen-production methods. 展开更多
关键词 density functional theory hydrogen evolution reaction NBO analysis reaction pathways
下载PDF
For more and purer hydrogen-the progress and challenges in water gas shift reaction
19
作者 Limin Zhou Yanyan Liu +8 位作者 Shuling Liu Huanhuan Zhang Xianli Wu Ruofan Shen Tao Liu Jie Gao Kang Sun Baojun Li Jianchun Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期363-396,I0010,共35页
The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to amm... The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to ammonia synthesis and other reactions. Advanced catalysts have been developed for both high and low-temperature reactions and are widely used in industry. In recent years, supported metal nanoparticle catalysts have been researched due to their high metal utilization. Low-temperature catalysts have shown promising results, including high selectivity, high shift rates, and higher activity potential. Additionally, significant progress has been made in removing trace CO through the redox reaction in electrolytic cell. This paper reviews the development of WGS reaction catalysts, including the reaction mechanism, catalyst design, and innovative research methods. The catalyst plays a crucial role in the WGS reaction, and this paper provides an instant of catalyst design under different conditions. The progress of catalysts is closely related to the development of advanced characterization techniques.Furthermore, modifying the catalyst surface to enhance activity and significantly increase reaction kinetics is a current research direction. This review goals to stimulate a better understanding of catalyst design, performance optimization, and driving mechanisms, leading to further progress in this field. 展开更多
关键词 Water gas shift reaction hydrogen production Heterogeneous catalysis reaction Mechanism Single atomic catalysts
下载PDF
Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction
20
作者 Jin Li Naiteng Wu +7 位作者 Jian Zhang Hong‑Hui Wu Kunming Pan Yingxue Wang Guilong Liu Xianming Liu Zhenpeng Yao Qiaobao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期161-187,共27页
Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.Nevertheless,the conventional"trial and error"method for producing advanced electrocatalysts is not only cost-ineffecti... Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.Nevertheless,the conventional"trial and error"method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive.Fortunately,the advancement of machine learning brings new opportunities for electrocatalysts discovery and design.By analyzing experimental and theoretical data,machine learning can effectively predict their hydrogen evolution reaction(HER)performance.This review summarizes recent developments in machine learning for low-dimensional electrocatalysts,including zero-dimension nanoparticles and nanoclusters,one-dimensional nanotubes and nanowires,two-dimensional nanosheets,as well as other electrocatalysts.In particular,the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted.Finally,the future directions and perspectives for machine learning in electrocatalysis are discussed,emphasizing the potential for machine learning to accelerate electrocatalyst discovery,optimize their performance,and provide new insights into electrocatalytic mechanisms.Overall,this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research. 展开更多
关键词 Machine learning hydrogen evolution reaction Low-dimensional electrocatalyst DESCRIPTOR Algorithm
下载PDF
上一页 1 2 180 下一页 到第
使用帮助 返回顶部