Climate change, mainly caused by the use of non-renewable fuels, has raised global concerns and led to the search for less polluting energy sources, making hydrogen a promising energy alternative with the potential to...Climate change, mainly caused by the use of non-renewable fuels, has raised global concerns and led to the search for less polluting energy sources, making hydrogen a promising energy alternative with the potential to contribute to changes in the energy mix of various countries through the use of technologies that enable its production and use with low or zero carbon emissions. In this context, Brazil has aroused great interest from other countries in exploring its renewable resources for the production of hydrogen (green hydrogen). In this sense, the use of natural gas pipelines and the use of hydrogen in mixtures with natural gas have become the subject of studies due to their economically viable alternative for the immediate use of this energy vector. However, there are still technical and regulatory challenges regarding the integration of hydrogen into the existing natural gas pipeline network. In this context, the present study aims to address the effects of hydrogen interaction with the structure of natural gas pipeline steel and the regulatory barriers to the use of this network for the transportation of green hydrogen, particularly in the state of Ceará/Brazil. After extensive analysis of literature and regulatory documents, it was concluded that: 1) Ceará/Brazil has strong potential to meet the demand for green hydrogen through the use of solar and wind energy sources;2) there is feasibility for the adaptation or conversion of natural gas infrastructure for the transportation of green hydrogen;3) discussions regarding the regulatory competence of green hydrogen transportation and distribution through the natural gas network in Brazil are still incipient;4) the current regulation of the natural gas industry can serve as a subsidy for the regulation of green hydrogen and natural gas transportation.展开更多
Hydrogen energy is a crucial carrier for the growth of the energy system and its low-carbon transformation.Using natural gas as a carrier of hydrogen transport and the natural gas pipeline network for transportation i...Hydrogen energy is a crucial carrier for the growth of the energy system and its low-carbon transformation.Using natural gas as a carrier of hydrogen transport and the natural gas pipeline network for transportation is a significant step toward realizing large-scale and long-distance hydrogen transport.Hydrogen-mixed natural gas is mainly separated into hydrogen and natural gas by physical methods at present.High purity of hydrogen recovery,but the recovery rate is low.At the same time,compared with natural gas,liquefied natural gas is more economical and flexible.This study analyzes three typical cryogenic separation processes.The results show that the hydrogen separation efficiency and specific energy consumption increase and the liquefaction rate and energy consumption decrease as the hydrogen ratio increases.The energy consumption and specific energy consumption of C3-MRC are lower than the MRC and the cascade liquefaction processes.Besides,as the pressure increases in the C3-MRC liquefaction process,the liquefaction and hydrogen separation efficiency increase and subsequently drop.Different hydrogen content has the highest hydrogen separation efficiency and liquefaction efficiency under different feed gas pressure conditions.The total exergy losses of the C3-MRC are the least in different hydrogen fractions,which are 37.59%and 21.77%less in the 25%hydrogen fraction,and 37.89%and 21.37%less in the 30%hydrogen fraction.Moreover,the exergy efficiency of C3-MRC are 87.68%and 88.06%when the hydrogen fraction are 25%and 30%,higher than the other two processes,which implies that in 25%and 30%fractions,making it more suitable for separate the hydrogen by the cryogenic separation.展开更多
In order to discuss the role and influence of water during the generation of natural gas,the participation mechanism of water during the evolution of organic matter and its influences were summarized.In addition,we ca...In order to discuss the role and influence of water during the generation of natural gas,the participation mechanism of water during the evolution of organic matter and its influences were summarized.In addition,we carried out an anhydrous cracking experiment of oil extracted from the Feixianguan Formation source rock in a closed system,which led to the establishment of the kinetic models for describing carbon and hydrogen isotopic fractionation during gas generation from organic matter.The models were calibrated and then applied to the northeastern Sichuan Basin.By combining a series of gas generation experiments from octadecane pyrolysis without water or with distilled water in varying mass proportions,several results were proved:(1) the hydrogen isotopic composition of natural gas becomes lighter with the participation of formation water;(2) we can quantitatively study the hydrogen isotopic fractionation with the kinetic model for describing carbon isotopic fractionation; (3) more abundant and reliable geological information can be obtained through the combined application of carbon and hydrogen isotopic indices.展开更多
In this article, the aptitude of natural gas as feedstock in steam reforming process for hydrogen production is compared with that of different liquid fuels (pure compounds and commercial fuels), with the aim to inv...In this article, the aptitude of natural gas as feedstock in steam reforming process for hydrogen production is compared with that of different liquid fuels (pure compounds and commercial fuels), with the aim to investigate the potentialities of biofuels to overcome the CO2 emission problems deriving from fossil fuel processing. The performances of a nickel based catalyst (commercially used in steam reforming of natural gas) were evaluated in terms of feed conversion and yield to the different products as function of temperature, space velocity and water/fuel ratio. Furthermore, a preliminary evaluation of catalyst durability was effected by monitoring yield to H2 versus time on stream and measuring coke formation at the end of experimental tests. High yields to hydrogen were obtained with all fuels investigated, whereas the deactivation phenomena, which are correlated to carbon deposition on the catalyst, were observed with all tested fuels, except for methane and biofuel.展开更多
Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents...Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents (HES 〉5 % mol.) is mostly distributed in both the gas reservoirs of Dukouhe, Luojiazhai, Puguang and Tieshanpo, which belong to the Triassic Feixianguan Formation in the northeastern Sichuan Basin and those of the Kongdian-Shahejie formations in the northeastern Jinxian Sag of the Jizhong Depression, Bohai Bay Basin. In the Sichuan Basin, the HES contents of natural gas average over 9% and some can be 17 %, while those of the Bohai Bay Basin range from 40 % to 92 %, being then one of the gas reservoirs with the highest H2S contents in the world. Based on detailed observation and sample analysis results of a total 5000 m of core from over 70 wells in the above-mentioned two basins, especially sulfur isotopic analysis of gypsum, brimstone, pyrite and natural gas, also with integrated study of the geochemical characteristics of hydrocarbons, it is thought that the natural gas with high HES contents resulted from thermochemical sulfate reduction (TSR) reactions. Among them, the natural gas in the Feixianguan Formation resulted from TSR reactions participated by hydrocarbon gas, while that in the Zhaolanzhuang of the Jinxian Sag being the product of TSR participated by crude oil. During the consumption process of hydrocarbons due to TSR, the heavy hydrocarbons were apt to react with sulfate, which accordingly resulted in the dry coefficient of natural gas increasing and the carbon isotopes becoming heavier.展开更多
CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for C...CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However. rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.展开更多
This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program A...This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program Aspen Plus. The results indicate that the most important destruction of exergy is found to occur in the reactor and water quenching scrubber, amounting to 8.23% and 10.39%, respectively, of the entire system. Based on the results of thermodynamic and exergy analysis, the acetylene reactor has been retrofitted. The improvement ratios of molar 02 to CH4 and molar CO to CN4 are 0.65 and 0.20, respectively. An improvement of the acetylene production system is proposed. Adopting the improvement operation conditions and using oil to realize the reaction heat recovery, the feedstock of natural gas is reduced by 9.88% and the exergy loss in the retrofitting process is decreased by 19.71% compared to the original process.展开更多
The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5. Chromium, molybdenum and tungsten are the group VI metals. Hence, in this work, 6%Mo/H-ZSM-5...The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5. Chromium, molybdenum and tungsten are the group VI metals. Hence, in this work, 6%Mo/H-ZSM-5 was correlated with 3%Cr+3%Mo/H-ZSM-5 and 3%W+3%Mo/H-ZSM-5 as catalysts to examine their promoting or inhibiting effects on the various reactions taking place during methane conversion. The catalytic activities of these catalysts were tested in a continuous flow fixed bed reactor at 700℃ and a GHSV of 1500 ml·g^-1·h^-1 Characterization of the catalysts using XRD, TGA and TPD were investigated. XRD and NH3-TPD showed greater interaction between the W-phase and the Bronsted acid sites in the channels of the zeolite than between Cr-phase and the acid sites in the zeolite.展开更多
Natural gas has been discovered in many anticlines in the southern margin of the Junggar Basin. However, the geochemical characteristics of natural gas in different anticlines haven’t been compared systematically, pa...Natural gas has been discovered in many anticlines in the southern margin of the Junggar Basin. However, the geochemical characteristics of natural gas in different anticlines haven’t been compared systematically, particularly, the type and source of natural gas discovered recently in Well Gaotan-1 at the Gaoquan anticline remain unclear. The gas composition characteristics and carbon and hydrogen isotope compositions in different anticlines were compared and sorted systematically to identify genetic types and source of the natural gas. The results show that most of the gas samples are wet gas, and a few are dry gas;the gas samples from the western and middle parts have relatively heavier carbon isotope composition and lighter hydrogen isotope composition, while the gas samples from the eastern part of southern basin have lighter carbon and hydrogen isotope compositions. The natural gas in the southern margin is thermogenic gas generated by freshwater-brackish water sedimentary organic matter, which can be divided into three types, coal-derived gas, mixed gas and oil-associated gas, in which coal-derived gas and mixed gas take dominance. The Jurassic coal measures is the main natural gas source rock in the southern margin, and the Permian lacustrine and the Upper Triassic lacustrine-limnetic facies source rocks are also important natural gas source rocks. The natural gas in the western part of the southern margin is derived from the Jurassic coal measures and the Permian lacustrine source rock, while the natural gas in the middle part of the southern margin is mainly derived from the Jurassic coal measures, partly from the Permian and/or the Upper Triassic source rocks, and the natural gas in the eastern part of the southern margin is originated from the Permian lacustrine source rock. The natural gas in the Qingshuihe oil and gas reservoir of Well Gaotan-1 is a mixture of coal-derived gas and oil-associated gas, of which the Jurassic and Permian source rocks contribute about half each.展开更多
Low-carbon hydrogen is expected to play a key role in realizing net-zero and sustainable development plans.Nonetheless,there is a gap between the cost of producing low-carbon hydrogen and its potential users’willingn...Low-carbon hydrogen is expected to play a key role in realizing net-zero and sustainable development plans.Nonetheless,there is a gap between the cost of producing low-carbon hydrogen and its potential users’willingness to pay for such hydrogen.To implement support for the development of the industry,we propose using low-carbon hydrogen long-term agreements allocated through auction mechanisms.The objectives are 2-fold:(i)matching supply and demand volumes considering the time horizon and geographical delivery point specification and(ii)allocating the subsidy.This perspective article innovates by proposing a reference price indexed to liquid to natural-gas prices,which is the main product that low-carbon hydrogen aims to substitute.The premium and the production cost are defined through a double-sided auction.This aims to minimize the public policy funds required to incentivize the low-carbon hydrogen market while facilitating long-term agreements and mitigating price risks that may hinder investment.展开更多
Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the chall...Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction.展开更多
To address the energy shortage and meet the requirements of environmental protection policies,the feasibility of premixed fuel 1(natural gas(NG),syngas,and hydrogen)and premixed fuel 2(NG and hydrogen)in the tobacco c...To address the energy shortage and meet the requirements of environmental protection policies,the feasibility of premixed fuel 1(natural gas(NG),syngas,and hydrogen)and premixed fuel 2(NG and hydrogen)in the tobacco curing system was studied.First,according to the law of conservation of energy and mass,a tobacco leaf curing system model was established.Then,the interchangeability index of the premixed fuels was analyzed,and their volume ratios were obtained.Finally,a numerical simulation analysis of the premixed fuel combustion was conducted based on the indicators of emission,temperature,and economy.On this basis,the comprehensive performance indexes of the system composed of different premixed fuels were evaluated.The results obtained indicate that with the increase in the hydrogen volume ratio in premixed fuel 1,NO_(X) emissions will gradually increase.Moreover,with the increase in the hydrogen volume ratio in premixed fuel 2,CO emissions will gradually decrease.Because premixed fuel 2 contains more hydrogen than premixed fuel 1,CO emissions are reduced by 9.39%and 16.72%as compared with the NG system when the volume ratio of NG to hydrogen is 95∶5 and 90∶10,but the NO emissions of the latter are beyond the acceptable range.Finally,the overall performance is good when the volume ratio of NG to hydrogen is 95∶5,and the volume ratio of NG to syngas to hydrogen is 90∶5∶5.展开更多
The intramolecular O−H…πhydrogen bond has garnered significant research interest in recent decades.In this work,we utilized the infrared(IR)-vacuum-ultraviolet(VUV)nonresonant ionization detected IR spectroscopy(NRI...The intramolecular O−H…πhydrogen bond has garnered significant research interest in recent decades.In this work,we utilized the infrared(IR)-vacuum-ultraviolet(VUV)nonresonant ionization detected IR spectroscopy(NRID-IR)method to study the molecular structure of neutral and cationic 2-methylallyl alcohol(MAA,CH_(2)=C(CH_(3))−CH_(2)−OH).Density functional theory calculations revealed five stable neutral and three stable cationic MAA conformers,respectively.Two neutral MAA conformers are expected to have an O−H…πintramolecular hydrogen bond interaction,based on the structural characterization that the OH group is directed toward the C=C double bond.The IR spectra of both neutral(2700−3700 cm^(−1))and cationic MAA(2500−7200 cm^(−1))were measured,and the anharmonic IR spectra were calculated at the B3LYP-D3(BJ)/def2-TZVPP level.The OH stretching vibration frequency of neutral MAA was observed at 3656 cm−1,slightly lower than those of methanol and ethanol.In contrast,the OH stretching vibration of cationic MAA was red-shifted by about 140 cm^(−1)compared to neutral MAA.The interaction region indicator and natural bond orbital analysis suggest that the O−H…πinteraction in neutral MAA is weak,and may not play a major role in stabilizing the neutral MAA.展开更多
文摘Climate change, mainly caused by the use of non-renewable fuels, has raised global concerns and led to the search for less polluting energy sources, making hydrogen a promising energy alternative with the potential to contribute to changes in the energy mix of various countries through the use of technologies that enable its production and use with low or zero carbon emissions. In this context, Brazil has aroused great interest from other countries in exploring its renewable resources for the production of hydrogen (green hydrogen). In this sense, the use of natural gas pipelines and the use of hydrogen in mixtures with natural gas have become the subject of studies due to their economically viable alternative for the immediate use of this energy vector. However, there are still technical and regulatory challenges regarding the integration of hydrogen into the existing natural gas pipeline network. In this context, the present study aims to address the effects of hydrogen interaction with the structure of natural gas pipeline steel and the regulatory barriers to the use of this network for the transportation of green hydrogen, particularly in the state of Ceará/Brazil. After extensive analysis of literature and regulatory documents, it was concluded that: 1) Ceará/Brazil has strong potential to meet the demand for green hydrogen through the use of solar and wind energy sources;2) there is feasibility for the adaptation or conversion of natural gas infrastructure for the transportation of green hydrogen;3) discussions regarding the regulatory competence of green hydrogen transportation and distribution through the natural gas network in Brazil are still incipient;4) the current regulation of the natural gas industry can serve as a subsidy for the regulation of green hydrogen and natural gas transportation.
基金the Science and Technology Innovation Seedling Project of Sichuan Province,China(No.2021079)the School-Level Key Program of Chengdu Technological University,China(No.210518).
文摘Hydrogen energy is a crucial carrier for the growth of the energy system and its low-carbon transformation.Using natural gas as a carrier of hydrogen transport and the natural gas pipeline network for transportation is a significant step toward realizing large-scale and long-distance hydrogen transport.Hydrogen-mixed natural gas is mainly separated into hydrogen and natural gas by physical methods at present.High purity of hydrogen recovery,but the recovery rate is low.At the same time,compared with natural gas,liquefied natural gas is more economical and flexible.This study analyzes three typical cryogenic separation processes.The results show that the hydrogen separation efficiency and specific energy consumption increase and the liquefaction rate and energy consumption decrease as the hydrogen ratio increases.The energy consumption and specific energy consumption of C3-MRC are lower than the MRC and the cascade liquefaction processes.Besides,as the pressure increases in the C3-MRC liquefaction process,the liquefaction and hydrogen separation efficiency increase and subsequently drop.Different hydrogen content has the highest hydrogen separation efficiency and liquefaction efficiency under different feed gas pressure conditions.The total exergy losses of the C3-MRC are the least in different hydrogen fractions,which are 37.59%and 21.77%less in the 25%hydrogen fraction,and 37.89%and 21.37%less in the 30%hydrogen fraction.Moreover,the exergy efficiency of C3-MRC are 87.68%and 88.06%when the hydrogen fraction are 25%and 30%,higher than the other two processes,which implies that in 25%and 30%fractions,making it more suitable for separate the hydrogen by the cryogenic separation.
基金financially aided by the National Natural Science Foundation of China(No.41002044)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20102322120003)the Foundation for University Key Teacher of Heilongjiang Province of China(No.1251G003)
文摘In order to discuss the role and influence of water during the generation of natural gas,the participation mechanism of water during the evolution of organic matter and its influences were summarized.In addition,we carried out an anhydrous cracking experiment of oil extracted from the Feixianguan Formation source rock in a closed system,which led to the establishment of the kinetic models for describing carbon and hydrogen isotopic fractionation during gas generation from organic matter.The models were calibrated and then applied to the northeastern Sichuan Basin.By combining a series of gas generation experiments from octadecane pyrolysis without water or with distilled water in varying mass proportions,several results were proved:(1) the hydrogen isotopic composition of natural gas becomes lighter with the participation of formation water;(2) we can quantitatively study the hydrogen isotopic fractionation with the kinetic model for describing carbon isotopic fractionation; (3) more abundant and reliable geological information can be obtained through the combined application of carbon and hydrogen isotopic indices.
文摘In this article, the aptitude of natural gas as feedstock in steam reforming process for hydrogen production is compared with that of different liquid fuels (pure compounds and commercial fuels), with the aim to investigate the potentialities of biofuels to overcome the CO2 emission problems deriving from fossil fuel processing. The performances of a nickel based catalyst (commercially used in steam reforming of natural gas) were evaluated in terms of feed conversion and yield to the different products as function of temperature, space velocity and water/fuel ratio. Furthermore, a preliminary evaluation of catalyst durability was effected by monitoring yield to H2 versus time on stream and measuring coke formation at the end of experimental tests. High yields to hydrogen were obtained with all fuels investigated, whereas the deactivation phenomena, which are correlated to carbon deposition on the catalyst, were observed with all tested fuels, except for methane and biofuel.
文摘Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents (HES 〉5 % mol.) is mostly distributed in both the gas reservoirs of Dukouhe, Luojiazhai, Puguang and Tieshanpo, which belong to the Triassic Feixianguan Formation in the northeastern Sichuan Basin and those of the Kongdian-Shahejie formations in the northeastern Jinxian Sag of the Jizhong Depression, Bohai Bay Basin. In the Sichuan Basin, the HES contents of natural gas average over 9% and some can be 17 %, while those of the Bohai Bay Basin range from 40 % to 92 %, being then one of the gas reservoirs with the highest H2S contents in the world. Based on detailed observation and sample analysis results of a total 5000 m of core from over 70 wells in the above-mentioned two basins, especially sulfur isotopic analysis of gypsum, brimstone, pyrite and natural gas, also with integrated study of the geochemical characteristics of hydrocarbons, it is thought that the natural gas with high HES contents resulted from thermochemical sulfate reduction (TSR) reactions. Among them, the natural gas in the Feixianguan Formation resulted from TSR reactions participated by hydrocarbon gas, while that in the Zhaolanzhuang of the Jinxian Sag being the product of TSR participated by crude oil. During the consumption process of hydrocarbons due to TSR, the heavy hydrocarbons were apt to react with sulfate, which accordingly resulted in the dry coefficient of natural gas increasing and the carbon isotopes becoming heavier.
基金the National Natural Science Foundation of China(Grant No.51176051 and 51106054)the National Basic Research Program of China(973 Program,No.2009CB219504-03)
文摘CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However. rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.
基金Supported by the National Natural Science Foundation of China (90210032, 50576001).
文摘This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program Aspen Plus. The results indicate that the most important destruction of exergy is found to occur in the reactor and water quenching scrubber, amounting to 8.23% and 10.39%, respectively, of the entire system. Based on the results of thermodynamic and exergy analysis, the acetylene reactor has been retrofitted. The improvement ratios of molar 02 to CH4 and molar CO to CN4 are 0.65 and 0.20, respectively. An improvement of the acetylene production system is proposed. Adopting the improvement operation conditions and using oil to realize the reaction heat recovery, the feedstock of natural gas is reduced by 9.88% and the exergy loss in the retrofitting process is decreased by 19.71% compared to the original process.
文摘The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5. Chromium, molybdenum and tungsten are the group VI metals. Hence, in this work, 6%Mo/H-ZSM-5 was correlated with 3%Cr+3%Mo/H-ZSM-5 and 3%W+3%Mo/H-ZSM-5 as catalysts to examine their promoting or inhibiting effects on the various reactions taking place during methane conversion. The catalytic activities of these catalysts were tested in a continuous flow fixed bed reactor at 700℃ and a GHSV of 1500 ml·g^-1·h^-1 Characterization of the catalysts using XRD, TGA and TPD were investigated. XRD and NH3-TPD showed greater interaction between the W-phase and the Bronsted acid sites in the channels of the zeolite than between Cr-phase and the acid sites in the zeolite.
基金Supported by the PetroChina Science and Technology Project(06-01A-01-02,2016A-0202)
文摘Natural gas has been discovered in many anticlines in the southern margin of the Junggar Basin. However, the geochemical characteristics of natural gas in different anticlines haven’t been compared systematically, particularly, the type and source of natural gas discovered recently in Well Gaotan-1 at the Gaoquan anticline remain unclear. The gas composition characteristics and carbon and hydrogen isotope compositions in different anticlines were compared and sorted systematically to identify genetic types and source of the natural gas. The results show that most of the gas samples are wet gas, and a few are dry gas;the gas samples from the western and middle parts have relatively heavier carbon isotope composition and lighter hydrogen isotope composition, while the gas samples from the eastern part of southern basin have lighter carbon and hydrogen isotope compositions. The natural gas in the southern margin is thermogenic gas generated by freshwater-brackish water sedimentary organic matter, which can be divided into three types, coal-derived gas, mixed gas and oil-associated gas, in which coal-derived gas and mixed gas take dominance. The Jurassic coal measures is the main natural gas source rock in the southern margin, and the Permian lacustrine and the Upper Triassic lacustrine-limnetic facies source rocks are also important natural gas source rocks. The natural gas in the western part of the southern margin is derived from the Jurassic coal measures and the Permian lacustrine source rock, while the natural gas in the middle part of the southern margin is mainly derived from the Jurassic coal measures, partly from the Permian and/or the Upper Triassic source rocks, and the natural gas in the eastern part of the southern margin is originated from the Permian lacustrine source rock. The natural gas in the Qingshuihe oil and gas reservoir of Well Gaotan-1 is a mixture of coal-derived gas and oil-associated gas, of which the Jurassic and Permian source rocks contribute about half each.
文摘Low-carbon hydrogen is expected to play a key role in realizing net-zero and sustainable development plans.Nonetheless,there is a gap between the cost of producing low-carbon hydrogen and its potential users’willingness to pay for such hydrogen.To implement support for the development of the industry,we propose using low-carbon hydrogen long-term agreements allocated through auction mechanisms.The objectives are 2-fold:(i)matching supply and demand volumes considering the time horizon and geographical delivery point specification and(ii)allocating the subsidy.This perspective article innovates by proposing a reference price indexed to liquid to natural-gas prices,which is the main product that low-carbon hydrogen aims to substitute.The premium and the production cost are defined through a double-sided auction.This aims to minimize the public policy funds required to incentivize the low-carbon hydrogen market while facilitating long-term agreements and mitigating price risks that may hinder investment.
基金Supported by the PetroChina Science and Technology Major Project(2019E-25)
文摘Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction.
基金National Key Research and Development Program of China(No.2019YFE0100100-08).
文摘To address the energy shortage and meet the requirements of environmental protection policies,the feasibility of premixed fuel 1(natural gas(NG),syngas,and hydrogen)and premixed fuel 2(NG and hydrogen)in the tobacco curing system was studied.First,according to the law of conservation of energy and mass,a tobacco leaf curing system model was established.Then,the interchangeability index of the premixed fuels was analyzed,and their volume ratios were obtained.Finally,a numerical simulation analysis of the premixed fuel combustion was conducted based on the indicators of emission,temperature,and economy.On this basis,the comprehensive performance indexes of the system composed of different premixed fuels were evaluated.The results obtained indicate that with the increase in the hydrogen volume ratio in premixed fuel 1,NO_(X) emissions will gradually increase.Moreover,with the increase in the hydrogen volume ratio in premixed fuel 2,CO emissions will gradually decrease.Because premixed fuel 2 contains more hydrogen than premixed fuel 1,CO emissions are reduced by 9.39%and 16.72%as compared with the NG system when the volume ratio of NG to hydrogen is 95∶5 and 90∶10,but the NO emissions of the latter are beyond the acceptable range.Finally,the overall performance is good when the volume ratio of NG to hydrogen is 95∶5,and the volume ratio of NG to syngas to hydrogen is 90∶5∶5.
基金gratefully acknowledge the Dalian Coherent Light Source(DCLS)for support and assistanceThis work was supported by the National Natural Science Foundation of China(No.22288201)+1 种基金the Chinese Academy of Sciences(GJJSTD20220001)the Innovation Program for Quantum Science and Technology(No.2021ZD0303305).
文摘The intramolecular O−H…πhydrogen bond has garnered significant research interest in recent decades.In this work,we utilized the infrared(IR)-vacuum-ultraviolet(VUV)nonresonant ionization detected IR spectroscopy(NRID-IR)method to study the molecular structure of neutral and cationic 2-methylallyl alcohol(MAA,CH_(2)=C(CH_(3))−CH_(2)−OH).Density functional theory calculations revealed five stable neutral and three stable cationic MAA conformers,respectively.Two neutral MAA conformers are expected to have an O−H…πintramolecular hydrogen bond interaction,based on the structural characterization that the OH group is directed toward the C=C double bond.The IR spectra of both neutral(2700−3700 cm^(−1))and cationic MAA(2500−7200 cm^(−1))were measured,and the anharmonic IR spectra were calculated at the B3LYP-D3(BJ)/def2-TZVPP level.The OH stretching vibration frequency of neutral MAA was observed at 3656 cm−1,slightly lower than those of methanol and ethanol.In contrast,the OH stretching vibration of cationic MAA was red-shifted by about 140 cm^(−1)compared to neutral MAA.The interaction region indicator and natural bond orbital analysis suggest that the O−H…πinteraction in neutral MAA is weak,and may not play a major role in stabilizing the neutral MAA.