The healing mechanism of hydrogen-attacked cracks in low carbon steel andCr-Mo steel and its influencing factors during the healing process were studied by recovering heattreatment of split specimens in vacuum. The re...The healing mechanism of hydrogen-attacked cracks in low carbon steel andCr-Mo steel and its influencing factors during the healing process were studied by recovering heattreatment of split specimens in vacuum. The result showed that crack pacing turns much smaller underthe condition of pure heating, especially for crack tips. The healing effect is well related to thelength of cracks with the shorter in priority. By the primary mechanism of thermal diffusion, ironand carbon atoms must diffuse at the high speed in steel to realize that plasticity deformationenergy exceeds and overcomes surface tensile force energy. In addition, phase transformation andstress-stain relationship also have positive effects on the process.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.59971011) and "973" Science Foundation of China (No. 19990650).
文摘The healing mechanism of hydrogen-attacked cracks in low carbon steel andCr-Mo steel and its influencing factors during the healing process were studied by recovering heattreatment of split specimens in vacuum. The result showed that crack pacing turns much smaller underthe condition of pure heating, especially for crack tips. The healing effect is well related to thelength of cracks with the shorter in priority. By the primary mechanism of thermal diffusion, ironand carbon atoms must diffuse at the high speed in steel to realize that plasticity deformationenergy exceeds and overcomes surface tensile force energy. In addition, phase transformation andstress-stain relationship also have positive effects on the process.