期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Experimental Study on Emission Control of Premixed Catalytic Combustion of Natural Gas Using Preheated Air 被引量:2
1
作者 许考 刘中良 +2 位作者 何洪 程水源 马重芳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期68-74,共7页
In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three t... In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three types of monoliths were used for experiments and the temperature of preheated air was respectively 50℃ , 100℃ and 200℃ . The results showed that preheated air made radial temperature in the catalytic monolith uniform which helped to avoid local hot spots so as to decrease NOx emission. The experiment also proved that the shorter monolith showed much better catalytic combustion performance than longer one and the temperature at the exit of the shorter monolith was relatively lower. On the contrary, the temperature was higher in the longer monolith and the lethal NOx emission was slightly increased. 展开更多
关键词 catalytic combustion preheated air natural gas EMISSION
下载PDF
Development and testing of a detailed kinetic mechanism of natural gas combustion in internal combustion engine 被引量:2
2
作者 M.Mansha A.R.Saleemi +1 位作者 Badar M.Ghauri Naveed Ramzan 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第2期97-106,共10页
A detailed chemical mechanism to describe the combustion of natural gas in internal combustion (IC) engine has been developed,which is consisting of 233 reversible reactions and 79 species.This mechanism accounts fo... A detailed chemical mechanism to describe the combustion of natural gas in internal combustion (IC) engine has been developed,which is consisting of 233 reversible reactions and 79 species.This mechanism accounts for the oxidation of methane,ethane,propane and nitrogen.It has been tested using IC engine model of CHEMKIN 4.1.1 and experimental measurements.The performance of the proposed mechanism was evaluated at various equivalence ratios (φ=0.6 to φ=1.3),initial reactor conditions (Tini=500 to 3500 ℃; Pini=1.0 to 10 atm) and engine speed (2000-7000 rpm).The proposed kinetic mechanism shows good concordances with GRI3.0 mechanism especially in the prediction of temperature,pressure and major product species (H2O,CO2) profiles at stoichiometric conditions (φ=1.0).The experimental results of measured cylinder pressure,species fractions were also in agreement with simulation results derived from the proposed kinetic mechanism.The proposed mechanism successfully predicts the formation of gaseous pollutants (CO,NO,NO2,NH3) in the engine exhaust.Although there are some discrepancies among each simulation profile,the proposed detailed mechanism is good to represent the combustion of natural gas in IC engine. 展开更多
关键词 natural gas detailed mechanism equivalence ratio pollutants emission combustion
下载PDF
Effects of different combustion modes on the thermal efficiency and emissions of a diesel pilot-ignited natural gas engine under low-medium loads 被引量:1
3
作者 JIN Shou-ying LI Jin-ze +2 位作者 ZI Zhen-yuan LIU Ya-long WU Bin-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2213-2224,共12页
Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as ... Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads. 展开更多
关键词 diesel pilot-ignited natural gas engine direct injection of natural gas combustion mode thermal efficiency EMISSIONS
下载PDF
Numerical Simulation of NO_x Formation in Coal Combustion with Inlet Natural Gas Burning 被引量:1
4
作者 张宇 周力行 +1 位作者 魏小林 盛宏至 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第3期318-323,共6页
A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural ... A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural gas burning is in fair agreement with the experimental results reported in references. The simulation results of different natural gas adding positions indicate that the natural gas burning can form lean oxygen combustion enviroment at the combustor inlet region and the NOx concentration is reduced. The same result can be obtained from chemical equilibrium analysis. 展开更多
关键词 coal combustion natural gas BURNING NOx formation numerical simulation
下载PDF
Influence of Mixture Gas Conditions on the Laminar Combustion Characteristics of Natural Gas
5
作者 LOU Diming ZHU Kan +4 位作者 ZHANG Yunhua REN Yedi TAN Piqiang FANG Liang FAN Lanlan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期1231-1241,共11页
Natural gas is a promising alternative fuel for the internal combustion engine,and natural gas engine has become an efficient and feasible measure to deal with the energy shortage and climate change.Since the laminar ... Natural gas is a promising alternative fuel for the internal combustion engine,and natural gas engine has become an efficient and feasible measure to deal with the energy shortage and climate change.Since the laminar flame characteristics are the foundation of the turbulent flame,the laminar flame characteristics of natural gas have a significant impact on the combustion status and efficiency of the engine.A visual constant volume bomb was used to study the influence of the gas components,different excess air coefficient(λ),and initial conditions on the laminar combustion characteristics of natural gas.The experimental results showed that when the initial pressure and temperature were 0.1 MPa and 300 K respectively,compared to propane,ethane had a remarkable influence on the equivalent-combustion laminar-combustion-speed,with an average increase of approximately 5.1%for every 2.5%increase in the ethane proportion.The laminar combustion velocity of the natural gas under different excess air coefficients had a maximum value at aboutλ=1.0,and the Markstein length of the flame decreased with the increase of theλ.The increase in the initial pressure of the mixture resulted in a decrease in the equivalent-combustion laminar-combustion-speed of the flame,a significant decrease in the Markstein length.The increase of the initial temperature of the mixture led to a rapid increase of the equivalent-combustion laminar-combustion-speed,but the effect on the flame Markstein length was not dominant. 展开更多
关键词 constant volume bomb natural gas engine combustion characteristics laminar combustion velocity Markstein length
原文传递
A Thermodynamic Analysis on the Catalytic Combustion of Methane 被引量:3
6
作者 Weicheng Liu, Yunpeng Xu, Zhijian Tian, Zhusheng XuDalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian 116023, China 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2003年第4期237-242,共6页
Chemical equilibria involving 10 species and adiabatic reaction temperatureof methane combustion in air under various conditions have been calculated in detail by means oftotal Gibbs energy minimization of the system.... Chemical equilibria involving 10 species and adiabatic reaction temperatureof methane combustion in air under various conditions have been calculated in detail by means oftotal Gibbs energy minimization of the system. The calculation data show that the adiabaticcombustion temperature of CH_4 and air at stoichiometric ratio is up to about 2200 K, and theequilibrium concentration of NO is about 0.0018, however that of NO2 is only 1 x 10^(-6). A largeamount of carbon deposition emerges when the CH_4 concentration is above 26.5%. The NO and NO_2appear only when the CH_4 concentration is below 16%. The maximum equilibrium concentrations of NOand NO_2 are 0.0028 and 2 x 10^(-6) respectively, at about 8%CH_4 concentration. The NO and NO_4concentrations increase with the system temperature at a low CH_4 concentration. However, both ofthem can be decreased when CO_2 or steam is introduced into the system, which also decreases theadiabatic combustion temperature. The decrease in adiabatic temperature caused by CO_2 addition ismore appreciable than that caused by the addition of H_2O. Pressure does not have a notable effecton the system equilibrium at a low methane concentration. 展开更多
关键词 METHANE natural gas combustion THERMODYNAMICS EQUILIBRIUM
下载PDF
A review of engine application and fundamental study on turbulent premixed combustion of hydrogen enriched natural gas 被引量:1
7
作者 WANG JinHua WEI ZhiLong +1 位作者 ZHANG Meng HUANG ZuoHua 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第3期445-451,共7页
The application and fundamental study on turbulent premixed combustion of hydrogen enriched natural gas is reviewed in this paper.Discussions include the combustion characteristics of direct injection engine fueled wi... The application and fundamental study on turbulent premixed combustion of hydrogen enriched natural gas is reviewed in this paper.Discussions include the combustion characteristics of direct injection engine fueled with hydrogen enriched natural gas,visualization study of direct injection combustion of hydrogen enriched natural gas using a constant volume vessel,and the fundamental study of turbulent premixed combustion of hydrogen enriched natural gas.The effect of additional hydrogen on the combustion process of natural gas engine is investigated from the fundamental view of the interaction between combustion reaction and turbulent flow. 展开更多
关键词 natural gas HYDROGEN direct injection combustion turbulent premixed combustion OH-PLIF ENGINE
原文传递
Development and Test of Combustion Chamber for Stirling Engine Heated by Natural Gas 被引量:1
8
作者 LI Tie SONG Xiange +3 位作者 GUI Xiaohong TANG Dawei LI Zhigang CAO Wenyu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第2期196-201,共6页
The combustion chamber is an important component for the Stifling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stifling engine which aims to generate 3-5 kWe electric power. The ... The combustion chamber is an important component for the Stifling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stifling engine which aims to generate 3-5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two appar- ent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stifling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experi- mental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utiliza- tion efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of com- bustion chamber has reached the design goal, The designed combustion chamber can be applied to a real Stifling engine heated by natural gas which is to generate 3-5 kWe electric power. 展开更多
关键词 combustion Chamber natural gas Stirling Engine DESIGNING Performance Test
原文传递
High-Efficiency and Clean Combustion Natural Gas Engines for Vehicles 被引量:1
9
作者 Fubai Li Zhi Wang +1 位作者 Yunfei Wang Boyuan Wang 《Automotive Innovation》 EI CSCD 2019年第4期284-304,共21页
Natural gas engines have become increasingly important in transportation applications,especially in the commercial vehicle sector.With increasing demand for high efficiency and low emissions,new technologies must be e... Natural gas engines have become increasingly important in transportation applications,especially in the commercial vehicle sector.With increasing demand for high efficiency and low emissions,new technologies must be explored to overcome the performance limitations of natural gas engines such as limits on lean or dilute combustion,unstable combustion,low burning velocity,and high emissions of CH_(4) and NO_(x).This paper reviews the progress of research on natural gas engines over recent decades,concentrating on ignition and combustion systems,mixture preparation,the development of different combustion modes,and after-treatment strategies.First,the features,advantages,and disadvantages of natural gas engines are introduced,following which the development of advanced ignition systems,organization of highly turbulent flows,and the preparation of high-reactivity mixtures in spark ignition engines are discussed with a focus on pre-chamber jet ignition,combustion chamber design,and H_(2)-enriched natural gas combustion.Third,the progress in natural gas dual-fuel engines is highlighted,including the exploration of new combustion modes,the development of novel pilot fuels,and the optimization of combustion control strategies.The fourth section discusses after-treatment systems for natural gas engines operating in different combustion modes.Finally,conclusions and future trends in the development of high-efficiency and clean combus-tion in natural gas engines are summarized. 展开更多
关键词 natural gas engines Pre-chamber jet ignition combustion chamber Fuel reforming Dual-fuel combustion After-treatment
原文传递
Performance and Economic Study of Oxy-fuel Gas Turbine Power Plant Utilizing Nuclear Steam Generator 被引量:1
10
作者 K. Oshima Y. Uchiyama 《Journal of Energy and Power Engineering》 2010年第8期24-31,共8页
The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for ... The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for a specific power output increase The saturated steam from the reactor can have lower pressure and temperature than those of an existing PWR. In this study, the authors estimated plant performances from a heat balance model based on a conceptual design of a hybrid plant and calculated the generating costs of the proposed plant from the Japanese cost data of an existing PWR plant and an liquefied natural gas (LNG) combined cycle gas turbine plant. The generating efficiency of an oxy-fuel gas turbine plant without a nuclear steam generator is estimated to be less than 35%. Based on this efficiency, with a nuclear steam generator contributing to the power output of the proposed hybrid plant, the corresponding generating efficiency is estimated to be around 45%, even if the steam conditions are lower than in an existing PWR. The generating costs are 15-20% lower than those calculated from the weighted heat performances of both an oxy-fuel gas turbine plant without a nuclear steam generator and an existing PWR plant. 展开更多
关键词 natural gas nuclear energy hybrid power plant gas turbine oxy-fuel combustion.
下载PDF
Development of a simplified n-heptane/methane model for high-pressure direct-injection natural gas marine engines 被引量:3
11
作者 Jingrui LI Haifeng LIU +5 位作者 Xinlei LIU Ying YE Hu WANG Xinyan WANG Hua ZHAO Mingfa YAO 《Frontiers in Energy》 SCIE CSCD 2021年第2期405-420,共16页
High-pressure direct-injection (HPDI) of natu- ral gas is one of the most promising solutions for future ship engines, in which the combustion process is mainly controlled by the chemical kinetics. However, the employ... High-pressure direct-injection (HPDI) of natu- ral gas is one of the most promising solutions for future ship engines, in which the combustion process is mainly controlled by the chemical kinetics. However, the employment of detailed chemical models for the multi-dimensional combustion simulation is significantly expensive due to the large scale of the marine engine. In the present paper, a reduced n-heptane/methane model consisting of 35-step reactions was constructed using multiple reduction approaches. Then this model was further reduced to include only 27 reactions by utilizing the HyChem (Hybrid Chemistry) method. An overall good agreement with the experimentally measured ignition delay data of both n-heptane and methane for these two reduced models was achieved and reasonable predictions for the measured laminar flame speeds were obtained for the 35-step model. But the 27-step model cannot predict the laminar flame speed very well. In addition, these two reduced models were both able to reproduce the experimentally measured in-cylinder pressure and heat release rate profiles for a HPDI natural gas marine engine, the highest error of predicted combustion phase being 6.5%. However, the engine-out CO emission was over-predicted and the highest error of predicted NOx emission was less than 12.9%. The predicted distributions of temperature and equivalence ratio by the 35-step and 27-step models are similar to those of the 334-step model. However, the predicted distributions of OH and CH2O are significantly different from those of the 334-step model. In short, the reduced chemical kinetic models developed provide a high-efficient and dependable method to simulate the characteristics of combustion and emissions in HPDI natural gas marine engines. 展开更多
关键词 high-pressure direct-injection natural gas chemical kinetics combustion modelling marine engine
原文传递
Modelling and analyzing the impact of hydrogen enriched natural gas on domestic gas boilers in a decarbonization perspective 被引量:3
12
作者 Fabio Schiro Anna Stoppato Alberto Benato 《Carbon Resources Conversion》 2020年第1期122-129,共8页
Decarbonization of energy economy is nowadays a topical theme,and several pathways are under discussion.Gaseous fuels have a fundamental role for this transition,and the production of low carbon-impact fuels is necess... Decarbonization of energy economy is nowadays a topical theme,and several pathways are under discussion.Gaseous fuels have a fundamental role for this transition,and the production of low carbon-impact fuels is necessary to deal with this challenge.The generation of renewable hydrogen is a trusted solution since this energy vector can be promptly produced from electricity and injected into the existing natural gas infrastructure,granting storage capacity and easy transportation.This scenario will lead,in the near future,to hydrogen enrichment of natural gas,whose impact on the infrastructures is being actively studied.The effect on end-user devices such as domestic gas boilers,instead,is still little analyzed and tested,but is fundamental to be assessed.The aim of this research is to generate knowledge on the effect of hydrogen enrichment on the widely used premixed boilers:the investigations include pollutant emissions,efficiency,flashback and explosion hazard,control system and materials selection.A model for calculating several parameters related to combustion of hydrogen enriched natural gas is presented.Guidelines for the design of new components are provided,and an insight is given on the maximum hydrogen blending bearable by the current boilers. 展开更多
关键词 Hydrogen enriched natural gas HYDROGEN Decarbonization Premixed boiler combustion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部