期刊文献+
共找到509篇文章
< 1 2 26 >
每页显示 20 50 100
Growth and annealing study of hydrogen-doped single diamond crystals under high pressure and high temperature 被引量:4
1
作者 李勇 贾晓鹏 +5 位作者 胡美华 刘晓兵 颜丙敏 周振翔 张壮飞 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期652-656,共5页
A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is sh... A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is shown that the high temperature plays a key role in the incorporation of hydrogen atoms during diamond crystallization.Fourier transform infrared micro-spectroscopy reveals that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp 3-CH 2-symmetric(2850 cm-1) and sp 3 CH 2-antisymmetric vibrations(2920 cm-1).The intensities of these peaks increase gradually with an increase in the content of the hydrogen source in the catalyst.The incorporation of hydrogen impurity leads to a significant shift towards higher frequencies of the Raman peak from 1332.06 cm-1 to 1333.05 cm-1 and gives rise to some compressive stress in the diamond crystal lattice.Furthermore,hydrogen to carbon bonds are evident in the annealed diamond,indicating that the bonds that remain throughout the annealing process and the vibration frequencies centred at 2850 and 2920 cm-1 have no observable shift.Therefore,we suggest that the sp 3 C-H bond is rather stable in diamond crystals. 展开更多
关键词 high pressure and high temperature hydrogen-doped diamond crystals ANNEALING LiH additives
下载PDF
Growth and annealing study of hydrogen-doped single diamond crystals under high pressure and high temperature
2
作者 李勇 贾晓鹏 +5 位作者 胡美华 刘晓兵 颜丙敏 周振翔 张壮飞 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期656-660,共5页
A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is sh... A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is shown that the high temperature plays a key role in the incorporation of hydrogen atoms during diamond crystallization.Fourier transform infrared micro-spectroscopy reveals that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp 3-CH 2-symmetric(2850 cm-1) and sp 3 CH 2-antisymmetric vibrations(2920 cm-1).The intensities of these peaks increase gradually with an increase in the content of the hydrogen source in the catalyst.The incorporation of hydrogen impurity leads to a significant shift towards higher frequencies of the Raman peak from 1332.06 cm-1 to 1333.05 cm-1 and gives rise to some compressive stress in the diamond crystal lattice.Furthermore,hydrogen to carbon bonds are evident in the annealed diamond,indicating that the bonds that remain throughout the annealing process and the vibration frequencies centred at 2850 and 2920 cm-1 have no observable shift.Therefore,we suggest that the sp 3 C-H bond is rather stable in diamond crystals. 展开更多
关键词 high pressure and high temperature hydrogen-doped diamond crystals ANNEALING LiH additives
全文增补中
Investigation on photonic crystal nanobeam cavity based on mixed diamond–circular holes
3
作者 Jingtong Bin Kerui Feng +4 位作者 Shang Ma Ke Liu Yong Cheng Jing Chen Qifa Liu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期63-70,共8页
A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefin... A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio. 展开更多
关键词 Photonic crystal nanobeam cavity Mixed diamond–circular holes Slots and anti-slots FDTD simulation Quality factor Mode volume
下载PDF
Inclusions in large diamond single crystals at different temperatures of synthesis 被引量:5
4
作者 Fei Han Shang-Sheng Li +8 位作者 Xue-Fei Jia Wei-Qin Chen Tai-Chao Su Mei-Hua Hu Kun-Peng Yu Jian-Kang Wang Yu-Min Wu Hong-An Ma Xiao-Peng Jia 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第2期439-444,共6页
The inclusions in large diamond single crystals have effects on its ultimate performance, which restricts its industrial applications to a great extent. Therefore, it is necessary to study the inclusions systematicall... The inclusions in large diamond single crystals have effects on its ultimate performance, which restricts its industrial applications to a great extent. Therefore, it is necessary to study the inclusions systematically. In this paper, large diamond single crystals with different content values of inclusions are synthesized along the(100) surface by the temperature gradient method(TGM) under 5.6 GPa at different temperatures. With the synthetic temperature changing from 1200?C to 1270?C,the shapes of diamonds change from plate to low tower, to high tower, even to steeple. From the microscopic photographs of the diamond samples, it can be observed that with the shapes of the samples changing at different temperatures, the content values of inclusions in diamonds become zero, a little, much and most, correspondingly. Consequently, with the temperature growing from low to high, the content values of inclusions in crystals increase. The origin of inclusions is explained by the difference in growth rate between diamond crystal and its surface. The content values of inclusions in diamond samples are quantitatively calculated by testing the densities of diamond samples. And the composition and inclusion content are analyzed by energy dispersive spectroscopy(EDS) and x-ray diffraction(XRD). From contrasting scanning electron microscopy(SEM) photographs, it can be found that the more the inclusions in diamond, the more imperfect the diamond surface is. 展开更多
关键词 INCLUSIONS LARGE diamond single crystals HIGH PRESSURE and HIGH temperature
下载PDF
Growth of gem-grade nitrogen-doped diamond crystals heavily doped with the addition of Ba(N_3)_2 被引量:2
5
作者 黄国锋 贾晓鹏 +4 位作者 李勇 胡美华 李战厂 颜丙敏 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期461-465,共5页
Additive Ba(N3)2 as a source of nitrogen is heavily doped into the graphite-Fe-based alloy system to grow nitrogendoped diamond crystals under a relatively high pressure (about 6.0 GPa) by employing the temperatur... Additive Ba(N3)2 as a source of nitrogen is heavily doped into the graphite-Fe-based alloy system to grow nitrogendoped diamond crystals under a relatively high pressure (about 6.0 GPa) by employing the temperature gradient method. Gem-grade diamond crystal with a size of around 5 mm and a nitrogen concentration of about 1173 ppm is successfully synthesised for the first time under high pressure and high temperature in a China-type cubic anvil highpressure apparatus. The growth habit of diamond crystal under the environment with high degree of nitrogen doping is investigated. It is found that the morphologies of heavily nitrogen-doped diamond crystals are all of octahedral shape dominated by {111} facets. The effects of temperature and duration on nitrogen concentration and form are explored by infrared absorption spectra. The results indicate that nitrogen impurity is present in diamond predominantly in the dispersed form accompanied by aggregated form, and the aggregated nitrogen concentration in diamond increases with temperature and duration. In addition, it is indicated that nitrogen donors are more easily incorporated into growing crystals at higher temperature. Strains in nitrogen-doped diamond crystal are characterized by micro-Raman spectroscopy. Measurement results demonstrate that the undoped diamond crystals exhibit the compressive stress, whereas diamond crystals heavily doped with the addition of Ba(N3)2 display the tensile stress. 展开更多
关键词 temperature gradient method gem-grade nitrogen-doped diamond crystals high temperature and high pressure additive Ba(N3)2
下载PDF
Synthesis of large diamond crystals containing high-nitrogen concentration at high pressure and high temperature using Ni-based solvent by temperature gradient method 被引量:1
6
作者 黄国锋 贾晓鹏 +4 位作者 李尚升 张亚飞 李勇 赵明 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期662-666,共5页
This paper reprots that with Ni-based catalyst/solvent and with a dopant of NAN3, large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure ... This paper reprots that with Ni-based catalyst/solvent and with a dopant of NAN3, large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure and high temperature in a China-type cubic anvil high-pressure apparatus (SPD-6 × 1200), and the highest nitrogen concentration reaches approximately 121-1257 ppm calculated by infrared absorption spectra. The synthesis conditions are about 5.5 CPa and 1240-1300 ℃. The growth behaviour of diamond with high-nitrogen concentration is investigated in detail. The results show that, with increasing the content of NaN3 added in synthesis system, the width of synthesis temperature region for growth high-quality diamonds becomes narrower, and the morphology of diamond crystal is changed from cube-octahedral to octahedral at same temperature and pressure, the crystal growth rate is slowed down, nevertheless, the nitrogen concentration doped in synthetic diamond increases. 展开更多
关键词 high temperature and high pressure nitrogen-doped diamond crystal temperature gra- dient method additive NaN3
下载PDF
The Even-Odd and the Isoelectronicity Rules Applied to Single Covalent Bonds in Ionic, Double-Face-Centered Cubic and Diamond-Like Crystals 被引量:6
7
作者 Geoffroy Auvert Marine Auvert 《Open Journal of Physical Chemistry》 2016年第2期21-33,共13页
Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, ... Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures;single covalent structures can be used in every case instead of the classical ionic model;covalent bonds and charges positions do not have any relation with the valence number given in the periodic table. 展开更多
关键词 Covalent Bond Even-Odd RULE Single Bond Chemical Structure crystal Solid Ionic crystal Face-Centered crystal diamond-LIKE
下载PDF
Energy beam-based direct and assisted polishing techniques for diamond:A review
8
作者 Zhuo Li Feng Jiang +7 位作者 Zhengyi Jiang Zige Tian Tian Qiu Tao Zhang Qiuling Wen Xizhao Lu Jing Lu Hui Huang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期93-124,共32页
Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficu... Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficult to realize high-efficiency and ultra-low damage machining of diamond.To address these challenges,several polishing methods have been developed for both single crystal diamond(SCD)and polycrystalline diamond(PCD),including mechanical,chemical,laser,and ion beam processing methods.In this review,the characteristics and application scope of various polishing technologies for SCD and PCD are highlighted.Specifically,various energy beam-based direct and assisted polishing technologies,such as laser polishing,ion beam polishing,plasma-assisted polishing,and laser-assisted polishing,are summarized.The current research progress,material removal mechanism,and infuencing factors of each polishing technology are analyzed.Although some of these methods can achieve high material removal rates or reduce surface roughness,no single method can meet all the requirements.Finally,the future development prospects and application directions of different polishing technologies are presented. 展开更多
关键词 single crystal diamond polycrystalline diamond energy beam polishing technology material removal mechanism influencing factors
下载PDF
Effect of surface modification on the radiation stability of diamond ohmic contacts
9
作者 牟恋希 赵上熳 +7 位作者 王鹏 原晓芦 刘金龙 朱志甫 陈良贤 魏俊俊 欧阳晓平 李成明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期444-448,共5页
The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarizatio... The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarization effect.However,the radiation stability of a diamond detector is also sensitive to surface modification.In this work,the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated.Before radiation,the specific contact resistivities(ρc)between Ti/Pt/Au-hydrogen-terminated diamond(H-diamond)and Ti/Pt/Au-oxygenterminated diamond(O-diamond)were 2.0×10^(-4)W·cm^(2) and 4.3×10^(-3)Wcm^(2),respectively.After 10 MeV electron radiation,the ρc of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were 5.3×10^(-3)W·cm^(2)and 9.1×10^(-3)W·cm^(2),respectively.The rates of change of ρc of H-diamond and O-diamond after radiation were 2550%and 112%,respectively.The electron radiation promotes bond reconstruction of the diamond surface,resulting in an increase in ρc. 展开更多
关键词 single crystal diamond ohmic contact surface modification electron radiation
下载PDF
Study on Abrasion Resistance Anisotropy of Natural Diamond Crystals
10
作者 周明 李旦 袁哲俊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1997年第4期76-78,共3页
This paper studies the abrasion mechanism of natural diamond crystals,proposes a new theory on soft and hard directions to grind diamonds in different planes.Examination of the micro-structure of polished surface by S... This paper studies the abrasion mechanism of natural diamond crystals,proposes a new theory on soft and hard directions to grind diamonds in different planes.Examination of the micro-structure of polished surface by SEM shows diamond is mainly removed through a micro-cleavage process in (111) planes and the abrasion resistance of diamond relates to the orientation of cleavage planes,and the abrasion resistance anisotropy of diamond crystals is mainly due to the different levels of difficulty in micro-cleavage,while they are lapped in different directions.The results of analysis are in conformance with experimental results. 展开更多
关键词 diamond ABRASION mechanism crystal ORIENTATION
下载PDF
New Potential Energy Functions for Diamond and α-Tin Crystals
11
作者 LIU Xin-hou ZHEN Zhen ZHANG Jian-cheng 《Chinese Physics Letters》 SCIE CAS CSCD 1998年第5期360-361,共2页
A new model of potential energy functions for atomic solids is given and applied to diamond andα-tin crystals.In the new model,a factor expressing the characters of covalent bonds has been included.Therefore it is su... A new model of potential energy functions for atomic solids is given and applied to diamond andα-tin crystals.In the new model,a factor expressing the characters of covalent bonds has been included.Therefore it is suitable for covalent crystals.New pontentials of C andα-Sn crystals accurately reproduce experimental elastic constants and phonon dispersion curves and so on.The set of new potentials is accurate enough for computer simulations. 展开更多
关键词 diamond crystal SOLIDS
下载PDF
A Novel Method of Fabricating a Well-Faceted Large-Crystal Diamond Through MPCVD 被引量:3
12
作者 满卫东 翁俊 +3 位作者 吴宇琼 陈朋 余学超 汪建华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第6期688-692,共5页
A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of tw... A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of two steps, namely single-crystal nucleation and growth. Prior to the fabrication of the well-faceted, large crystal diamond, an investigation was made into the nucleation and growth of the diamond which were affected by the O2 concentration and substrate temperature. Deposited diamond crystals were characterized by scanning electron microscopy and micro-Raman spectroscopy. The results showed that the conditions of single-crystal nucleation were appropriate when the ratio of H2/CH4/O2 was about 200/7.0/2.0, while the sub- strate temperature Ts of 1000℃ to 1050℃ was the appropriate range for single-crystal diamond growth. Under the optimum parameters, a well-faeeted large crystal diamond was obtained. 展开更多
关键词 diamond MPCVD single crystal two-step method well-faceted
下载PDF
FEM simulations and experimental studies of the temperature field in a large diamond crystal growth cell 被引量:4
13
作者 李战厂 贾晓鹏 +4 位作者 黄国锋 胡美华 李勇 颜丙敏 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期363-367,共5页
We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure an... We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure and high temperature (HPHT). We employ both the finite element method (FEM) and in situ experiments. Simulation results show that the temperature in the center area of the growth cell continues to decrease during the process of large diamond crystal growth. These results are in good agreement with our experimental data, which demonstrates that the finite element model can successfully predict the temperature field variations in the growth cell. The FEM simulation will be useful to grow larger high-quality diamond crystal by using the TGM. Furthermore, this method will be helpful in designing better cells and improving the growth process of gem-quality diamond crystal. 展开更多
关键词 temperature field finite element method single crystal growth diamond
下载PDF
Effects of catalyst height on diamond crystal morphology under high pressure and high temperature 被引量:2
14
作者 李亚东 贾晓鹏 +4 位作者 颜丙敏 陈宁 房超 李勇 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期409-412,共4页
The effect of the catalyst height on the morphology of diamond crystal is investigated by means of temperature gradient growth (TGG) under high pressure and high temperature (HPHT) conditions with using a Ni-based... The effect of the catalyst height on the morphology of diamond crystal is investigated by means of temperature gradient growth (TGG) under high pressure and high temperature (HPHT) conditions with using a Ni-based catalyst in this article. The experimental results show that the morphology of diamond changes from an octahedral shape to a cub- octahedral shape as the catalyst height rises. Moreover, the finite element method (FEM) is used to simulate the temperature field of the melted catalyst/solvent. The results show that the temperature at the location of the seed diamond continues to decrease with the increase of catalyst height, which is conducive to changing the morphology of diamond. This work provides a new way to change the diamond crystal morphology. 展开更多
关键词 diamond crystal MORPHOLOGY CATALYST finite element method
下载PDF
Evolution of nitrogen structure in N-doped diamond crystal after high pressure and high temperature annealing treatment 被引量:1
15
作者 郑友进 黄国锋 +1 位作者 李战厂 左桂鸿 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期579-583,共5页
In this paper, we have reported an investigation on the evolution of nitrogen structures in diamond crystals which contain nitrogen donor atoms in the range of 1500 ppm-1600 ppm following an annealing treatment at a h... In this paper, we have reported an investigation on the evolution of nitrogen structures in diamond crystals which contain nitrogen donor atoms in the range of 1500 ppm-1600 ppm following an annealing treatment at a high pressure of about 6.5 GPa and high temperatures of 1920 K-2120 K. The annealing treatment was found to completely transform nitrogen atoms originally arranged in a single substitutional form (C-center), into a pair form (A-center), indicated from infrared (IR) spectra. The photoluminescence (PL) spectra revealed that a small fraction of nitrogen atoms remained in C-center form, while some nitrogen atoms in A-center form were further transformed into N3 and H3 center structures. In addition, PL spectra have revealed the existence of two newly observed nitrogen-related structures with zero phonon lines at 611 nm and 711 nm. All these findings above are very helpful in understanding the formation mechanism of natural diamond stones of the Ia-type, which contains nitrogen atoms in an aggregated form. 展开更多
关键词 IaA-type diamond crystal nitrogen aggregation H3 center N3 center
下载PDF
Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility 被引量:2
16
作者 Xin-Yuan Miao Hong-An Ma +4 位作者 Zhuang-Fei Zhang Liang-Chao Chen Li-Juan Zhou Min-Si Li Xiao-Peng Jia 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期625-630,共6页
We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature(HPHT) conditions(5.9 GPa and 1290℃). The optical and electrical... We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature(HPHT) conditions(5.9 GPa and 1290℃). The optical and electrical properties and surface characterization of the synthetic diamonds were observed and studied. Incorporation of nitrogen significantly changed the growth trace on surface of boron-containing diamonds. X-ray photoelectron spectroscopy(XPS) measurements showed good evident that nitrogen atoms successfully incorporate into the boron-rich diamond lattice and bond with carbon atoms. Raman spectra showed differences on the as-grown surfaces and interior between boron-doped and boron/nitrogen co-doped diamonds. Fourier transform infrared spectroscopy(FTIR) measurements indicated that the nitrogen incorporation significantly decreases the boron acceptor concentration in diamonds. Hall measurements at room temperature showed that the carriers concentration of the co-doped diamonds decreases, and the mobility increases obviously. The highest hole mobility of sample BNDD-1 reached 980 cm^(2)·V^(-1)·s^(-1), possible reasons were discussed in the paper. 展开更多
关键词 high pressure and high temperature(HPHT) diamond growth of crystal boron and nitrogen codoped diamond
下载PDF
B-C Bond in Diamond Single Crystal Synthesized with h-BN Additive at High Pressure and High Temperature 被引量:2
17
作者 李勇 周振翔 +4 位作者 管学茂 李尚升 王应 贾晓鹏 马红安 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第2期137-140,共4页
The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from ... The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from yellow to dark green with increasing the h-BN addition. Fourier-transform infrared (FTIR) results indicate that sp2 hybridization B-N-B and B-N structures generate when the additive content reaches a certain value in the system. The two peaks are located at 745 and 1425cm-1, respectively. Fhrthermore, the FTIR characteristic peak resulting from nitrogen pairs is noticed and it tends to vanish when the h-BN addition reaches 1.1 wt%. Furthermore, Raman peak of the synthesized diamond shifts down to a lower wavenumber with increasing the h-BN ~ddition content in the synthesis system. 展开更多
关键词 BN in of B-C Bond in diamond Single crystal Synthesized with h-BN Additive at High Pressure and High Temperature with
下载PDF
Structural Imperfections Associated with Supersaturated Vacancies in an HPHT-Grown Diamond Single Crystal 被引量:1
18
作者 Longwei YIN, Musen LI, Dongsheng SUN, Zhangying YAO and Jianjun CUI School of Materials Science and Engineering, Shandong University, Jinan 250061, China Zhaoyin HAO StateKey Laboratory for Superhard Materials, Jilin University, Changchun 130012, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期553-555,共1页
A diamond single crystal, which was synthesized at a high temperature of 1570 K and a high pressure of 5.5 GPa in a Fe-Ni-C system, was directly and systematically examined by transmission electron microscopy (TEM). I... A diamond single crystal, which was synthesized at a high temperature of 1570 K and a high pressure of 5.5 GPa in a Fe-Ni-C system, was directly and systematically examined by transmission electron microscopy (TEM). It is proposed that there exists a variety of imperfections such as dislocation loops, stacking faults, twins and stacking-fault tetrahedral in the diamond, which may be derived from the supersaturated vacancies generated during rapid cooling from high temperature. The formation process of the imperfections is discussed briefly. 展开更多
关键词 Structural Imperfections Associated with Supersaturated Vacancies in an HPHT-Grown diamond Single crystal
下载PDF
Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface
19
作者 Ze-Yang Ren Jun Liu +4 位作者 Kai Su Jin-Feng Zhang Jin-Cheng Zhang Sheng-Rui Xu Yue Hao 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期352-357,共6页
We report the simultaneous enlarged growth of seven single crystal diamond(SCD) plates free from polycrystalline diamond(PCD) rim by using a microwave plasma chemical vapor deposition(MPCVD) system. Optical microscope... We report the simultaneous enlarged growth of seven single crystal diamond(SCD) plates free from polycrystalline diamond(PCD) rim by using a microwave plasma chemical vapor deposition(MPCVD) system. Optical microscope and atomic force microscope(AFM) show the typical step-bunching SCD morphology at the center, edge, and corner of the samples. The most aggressively expanding sample shows a top surface area three times of that of the substrate. The effective surface expanding is attributed to the utilization of the diamond substrates with(001) side surfaces, the spacial isolation of them to allow the sample surface expanding, and the adoption of the reported pocket holder. Nearly constant temperature of the diamond surfaces is maintained during growth by only decreasing the sample height, and thus all the other growth parameters can be kept unchanged to achieve high quality SCDs. The SCDs have little stress as shown by the Raman spectra. The full width at half maximum(FWHM) data of both the Raman characteristic peak and(004) x-ray rocking curve of the samples are at the same level as those of the standard CVD SCD from Element Six Ltd. The nonuniformity of the sample thickness or growth rate is observed, and photoluminescence spectra show that the nitrogen impurity increases with increasing growth rate. It is found that the reduction of the methane ratio in the sources gas flow from 5% to 3% leads to decrease of the vertical growth rate and increase of the lateral growth rate. This is beneficial to expand the top surface and improve the thickness uniformity of the samples. At last, the convenience of the growth method transferring to massive production has also been demonstrated by the successful simultaneous enlarged growth of 14 SCD samples. 展开更多
关键词 diamond chemical vapour deposition crystal growth expanded top surface polycrystalline diamond rimless
下载PDF
Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD
20
作者 Li-fu Hei Yun Zhao +3 位作者 Jun-jun Wei Jin-long Liu Cheng-ming Li Fan-xiu Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1424-1430,共7页
Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition(CVD) were examined using a low-temperature photoluminescence(PL) technique. The results show that most of the nitrogen-vac... Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition(CVD) were examined using a low-temperature photoluminescence(PL) technique. The results show that most of the nitrogen-vacancy(NV) complexes are present as NV-centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N_2 incorporation and the high mobility of vacancies under growth temperatures of 950–1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy(Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition(MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV-centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing. 展开更多
关键词 diamond single crystals direct current ARC plasma JET chemical vapor deposition PHOTOLUMINESCENCE optical SPECTRA
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部