We report a hydrogen-evolution dimerization of styrenes via the synergistic merger of Acr+-Mes photocatalyst and cobaloxime proton reduction catalysts. By utilizing this dual catalyst system, 1,2-dihydro-1-arylnaphth...We report a hydrogen-evolution dimerization of styrenes via the synergistic merger of Acr+-Mes photocatalyst and cobaloxime proton reduction catalysts. By utilizing this dual catalyst system, 1,2-dihydro-1-arylnaphthalene derivatives can be directly constructed from commercially available styrenes. Our reaction proceeds smoothly under mild conditions without the need for oxidants or hydrogen atom transfer reagents, and the sole byproduct is hydrogen gas. Mechanistic investigation suggests that the reaction is initiated by photoinduced electron transfer under visible-light irradiation.展开更多
Despite being technically possible, splitting water to generate hydrogen is practically unfeasible, mainly because of the lack of sustainable and efficient earth-abundant catalysts for the hydrogen-evolution reaction ...Despite being technically possible, splitting water to generate hydrogen is practically unfeasible, mainly because of the lack of sustainable and efficient earth-abundant catalysts for the hydrogen-evolution reaction (HER). Herein, we report a durable and highly active electrochemical HER catalyst based on defect-rich TiO2 nanoparticles loaded on Co nanoparticles@N-doped carbon nanotubes (D-TiOdCo@NCT) synthesized by electrostatic spinning and a subsequent calcining process. The ultrasmall TiO2 nanoparticles are 1.5-2 nm in size and have a defect-rich structure of oxygen vacancies. D-TiO2/Co@NCT exhibits excellent HER catalytic activity in an acidic electrolyte (0.5 M H2SO4), with a low onset potential of -57.5 mV (1 mA·cm^-2), a small Tafel slope of 73.5 mV·dec^-1, and extraordinary long-term durability. X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and theoretical calculations confirm that the Ti3. defect-rich structure can effectively regulate the catalytic activity for electrochemical water splitting.展开更多
基金supported by the Ministry of Science and Technology of China (2014CB239402, 2017YFA0206903)the National Natural Science foundation of China (21390404)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Science (XDB17000000)the Key Research Pro-gram of Frontier Sciences, the Chinese Academy of Sciences (QYZDY-SSW-JSC029)~~
文摘We report a hydrogen-evolution dimerization of styrenes via the synergistic merger of Acr+-Mes photocatalyst and cobaloxime proton reduction catalysts. By utilizing this dual catalyst system, 1,2-dihydro-1-arylnaphthalene derivatives can be directly constructed from commercially available styrenes. Our reaction proceeds smoothly under mild conditions without the need for oxidants or hydrogen atom transfer reagents, and the sole byproduct is hydrogen gas. Mechanistic investigation suggests that the reaction is initiated by photoinduced electron transfer under visible-light irradiation.
基金We thank the Fundamental Research Funds for the Central Universities (No. D2153880), Project of Public Interest Research and Capacity Building of Guangdong Province (No. 2014A010106005) and the National Natural Science Foundation of China (No. 51502096).
文摘Despite being technically possible, splitting water to generate hydrogen is practically unfeasible, mainly because of the lack of sustainable and efficient earth-abundant catalysts for the hydrogen-evolution reaction (HER). Herein, we report a durable and highly active electrochemical HER catalyst based on defect-rich TiO2 nanoparticles loaded on Co nanoparticles@N-doped carbon nanotubes (D-TiOdCo@NCT) synthesized by electrostatic spinning and a subsequent calcining process. The ultrasmall TiO2 nanoparticles are 1.5-2 nm in size and have a defect-rich structure of oxygen vacancies. D-TiO2/Co@NCT exhibits excellent HER catalytic activity in an acidic electrolyte (0.5 M H2SO4), with a low onset potential of -57.5 mV (1 mA·cm^-2), a small Tafel slope of 73.5 mV·dec^-1, and extraordinary long-term durability. X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and theoretical calculations confirm that the Ti3. defect-rich structure can effectively regulate the catalytic activity for electrochemical water splitting.