In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two red...In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two reduced (One step & Four steps) models were examined for various IC engine designs. The detailed models (GRIMECH3.0, & UBC MECH2.0) and 4-step models successfully predicted the combustion while global model was unable to predict any combustion reaction. This study illustrated that the detailed model showed good concordances in the prediction of chamber pressure, temperature and major combustion species profiles. The detailed models also exhibited the capabilities to predict the pollutants formation in an IC engine while the reduced schemes showed failure in the prediction of pollutants emissions. Although, there are discrepancies among the profiles of four considered model, the detailed models (GRIMECH3.0 & UBC MECH2.0) produced the acceptable agreement in the species prediction and formation of pollutants.展开更多
To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as hea...To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.展开更多
Based on the theory of thermal radiation,a contact type optical fiber pyrometer applied in IC engine is put forward.It is composed of three parts:a blackbody probe,optical system,electrical process system.The key tech...Based on the theory of thermal radiation,a contact type optical fiber pyrometer applied in IC engine is put forward.It is composed of three parts:a blackbody probe,optical system,electrical process system.The key technology of design is discussed.Experiment is given to prove that the pyrometer has much higher responsive speed,distinguishability and much longer running life than other pyrometers.展开更多
Several main steps of internal combustion engine block structure dynamic design,such as model set up,structure dynamic response analysis,optimizing design and vibration and noise control,are discussed for the type of...Several main steps of internal combustion engine block structure dynamic design,such as model set up,structure dynamic response analysis,optimizing design and vibration and noise control,are discussed for the type of EQ6100 gasoline engine block展开更多
The health monitoring has been studied to ensure integrity of design of engine structure by detection,quantification,and prediction of damages.Early detection of faults may allow the downtime of maintenance to be resc...The health monitoring has been studied to ensure integrity of design of engine structure by detection,quantification,and prediction of damages.Early detection of faults may allow the downtime of maintenance to be rescheduled,thus preventing sudden shutdown of machines.In cylinder pressure developed,vibrations and noise emissions data provide a rich source of information about condition of engines.Monitoring of vibrations and noise emissions are novel non-intrusive methodologies for which positioning of various transducers are important issue.The presented work shows applicability of these diagnosis methodologies adopted in case of diesel engines.The effects of changing various fuel injection parameters was analyzed.Scope of using non-intrusive technique has been analyzed by changing locations of microphone.Novelty of this worklies in exploring signal processing methods for various locations around the engine test set up.Various frequency ranges of contributing noise and vibration sources were identified.Time-Frequency analysis showed the onset of various cyclic.Based on the identification of various frequency bands,it is possible to device suitable filters in order to extract more information.展开更多
State Engineering Research Center for Asic Design The National Engineering Research Center for ASIC Design is a national base for ASIC analysis and design.Its current research area includes:IC analysis/design methods,...State Engineering Research Center for Asic Design The National Engineering Research Center for ASIC Design is a national base for ASIC analysis and design.Its current research area includes:IC analysis/design methods,system development and application and commercial IC chip analysis. The center was established on the basis of the Microelectronic Design Center of Institute of Automation of the Chinese Academy of Sciences. As a pool of intelligent and technical resource,many researchers and experts on IC analysis/design and computer software/展开更多
文摘In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two reduced (One step & Four steps) models were examined for various IC engine designs. The detailed models (GRIMECH3.0, & UBC MECH2.0) and 4-step models successfully predicted the combustion while global model was unable to predict any combustion reaction. This study illustrated that the detailed model showed good concordances in the prediction of chamber pressure, temperature and major combustion species profiles. The detailed models also exhibited the capabilities to predict the pollutants formation in an IC engine while the reduced schemes showed failure in the prediction of pollutants emissions. Although, there are discrepancies among the profiles of four considered model, the detailed models (GRIMECH3.0 & UBC MECH2.0) produced the acceptable agreement in the species prediction and formation of pollutants.
基金Project(2011CB707201)supported by the National Basic Research Program of ChinaProject(51376057)supported by the National Natural Science Foundation of China
文摘To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.
文摘Based on the theory of thermal radiation,a contact type optical fiber pyrometer applied in IC engine is put forward.It is composed of three parts:a blackbody probe,optical system,electrical process system.The key technology of design is discussed.Experiment is given to prove that the pyrometer has much higher responsive speed,distinguishability and much longer running life than other pyrometers.
文摘Several main steps of internal combustion engine block structure dynamic design,such as model set up,structure dynamic response analysis,optimizing design and vibration and noise control,are discussed for the type of EQ6100 gasoline engine block
文摘The health monitoring has been studied to ensure integrity of design of engine structure by detection,quantification,and prediction of damages.Early detection of faults may allow the downtime of maintenance to be rescheduled,thus preventing sudden shutdown of machines.In cylinder pressure developed,vibrations and noise emissions data provide a rich source of information about condition of engines.Monitoring of vibrations and noise emissions are novel non-intrusive methodologies for which positioning of various transducers are important issue.The presented work shows applicability of these diagnosis methodologies adopted in case of diesel engines.The effects of changing various fuel injection parameters was analyzed.Scope of using non-intrusive technique has been analyzed by changing locations of microphone.Novelty of this worklies in exploring signal processing methods for various locations around the engine test set up.Various frequency ranges of contributing noise and vibration sources were identified.Time-Frequency analysis showed the onset of various cyclic.Based on the identification of various frequency bands,it is possible to device suitable filters in order to extract more information.
文摘State Engineering Research Center for Asic Design The National Engineering Research Center for ASIC Design is a national base for ASIC analysis and design.Its current research area includes:IC analysis/design methods,system development and application and commercial IC chip analysis. The center was established on the basis of the Microelectronic Design Center of Institute of Automation of the Chinese Academy of Sciences. As a pool of intelligent and technical resource,many researchers and experts on IC analysis/design and computer software/