期刊文献+
共找到13,686篇文章
< 1 2 250 >
每页显示 20 50 100
Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries 被引量:2
1
作者 Masytha Nuzula Ramdhiny Ju‐Won Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期140-163,共24页
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode... Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle. 展开更多
关键词 CONDUCTIVITY lithiumion batteries molecular interactions polymeric binders self‐healability Si anodes
下载PDF
Multilevel carbon architecture of subnanoscopic silicon for fast‐charging high‐energy‐density lithium‐ion batteries 被引量:1
2
作者 Meisheng Han Yongbiao Mu +2 位作者 Lei Wei Lin Zeng Tianshou Zhao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期256-268,共13页
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p... Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C. 展开更多
关键词 fast charging high energy densities lithiumion batteries multilevel carbon architecture subnanoscopic silicon anode
下载PDF
Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy
3
作者 Wenhua Yu Yanyan Wang +5 位作者 Aimin Wu Aikui Li Zhiwen Qiu Xufeng Dong Chuang Dong Hao Huang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期138-151,共14页
Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous ... Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density. 展开更多
关键词 lithium-rich manganese-based cathodes lithium ion batteries Oxygen redox Oxygen evolution Integrated strategy
下载PDF
Enhanced axonal regeneration and functional recovery of the injured sciatic nerve in a rat model by lithium-loaded electrospun nanofibrous scaffolds
4
作者 Banafsheh Dolatyar Bahman Zeynali +2 位作者 Iman Shabani Azita Parvaneh Tafreshi Reza Karimi-Soflou 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期701-720,共20页
Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,... Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold.To achieve this,we fabricated an electrospun nanofibrous scaffold(ENS)containing polylactide nanofibers loaded with lithium(Li)ions,a Wnt/β-catenin signaling activator.In addition,we seeded human adipose-derived mesenchymal stem cells(hADMSCs)onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced.We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model.Our results showed that Li-loaded ENSs gradually released Li within 11 d,at concentrations ranging from 0.02 to(3.64±0.10)mmol/L,and upregulated the expression of Wnt/β-catenin target genes(cyclinD1 and c-Myc)as well as those of Schwann cell markers(growth-associated protein 43(GAP43),S100 calcium binding protein B(S100B),glial fibrillary acidic protein(GFAP),and SRY-box transcription factor 10(SOX10))in differentiated hADMSCs.In the PNI rat model,implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve.This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs,which showed no fibrous connective tissue but enhanced organized myelinated axons.The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering. 展开更多
关键词 Stem cell Schwann cell differentiation Electrospun nanofibrous scaffold lithium ion Nerve regeneration
下载PDF
A layered multifunctional framework based on polyacrylonitrile and MOF derivatives for stable lithium metal anode
5
作者 Fanfan Liu Peng Zuo +5 位作者 Jing Li Pengcheng Shi Yu Shao Linwei Chen Yihong Tan Tao Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期282-288,I0007,共8页
Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition be... Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks. 展开更多
关键词 lithium metal anode Layered multifunctional framework ions flux redistribution Electrical insulation/conduction structure Uniform Li deposition
下载PDF
Smart materials for safe lithium-ion batteries against thermal runaway
6
作者 Yu Ou Pan Zhou +5 位作者 Wenhui Hou Xiao Ma Xuan Song Shuaishuai Yan Yang Lu Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期360-392,共33页
In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost ef... In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost efficiency,a quantity of research has been conducted on the commercial application of LIBs.However,it is difficult to achieve satisfying safety and cycling performance simultaneously.There may be thermal runaway(TR),external impact,overcharge and overdischarge in the process of battery abuse,which makes the safety problem of LIBs more prominent.In this review,we summarize recent progress in the smart safety materials design towards the goal of preventing TR of LIBs reversibly from different abuse conditions.Benefiting from smart responsive materials and novel structural design,the safety of LIBs can be improved a lot.We expect to provide a comprehensive reference for the development of smart and safe lithium-based battery materials. 展开更多
关键词 lithium ion batteries(LIBs) Thermal runaway(TR) Smart materials Safe batteries Solid electrolyte interface(SEI)
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
7
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 lithium-ion Batteries Battery Construction Battery Characteristics Energy Storage Electrochemical Cells Anode Materials Cathode Materials State of Charge (SOC) Depth of Discharge (DOD) Solid Electrolyte Interface (SEI)
下载PDF
Investigation on step overcharge to self-heating behavior and mechanism analysis of lithium ion batteries 被引量:2
8
作者 Fengling Yun Shiyang Liu +14 位作者 Min Gao Xuanxuan Bi Weijia Zhao Zenghua Chang Minjuan Yuan Jingjing Li Xueling Shen Xiaopeng Qi Ling Tang Yi Cui Yanyan Fang Lihao Guo Shangqian Zhao Xiangjun Zhang Shigang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期301-311,共11页
To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavio... To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery. 展开更多
关键词 lithium ion battery Step overcharge SELF-HEATING Boundary Heat generation Amount of lithium
下载PDF
Engineering Multi‑field‑coupled Synergistic Ion Transport System Based on the Heterogeneous Nanofluidic Membrane for High‑Efficient Lithium Extraction 被引量:2
9
作者 Lin Fu Yuhao Hu +8 位作者 Xiangbin Lin Qingchen Wang Linsen Yang Weiwen Xin Shengyang Zhou Yongchao Qian Xiang‑Yu Kong Lei Jiang Liping Wen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期436-449,共14页
The global carbon neutrality strategy brings a wave of rechargeable lithium‐ion batteries technique development and induces an ever-growing consumption and demand for lithium(Li).Among all the Li exploitation,extract... The global carbon neutrality strategy brings a wave of rechargeable lithium‐ion batteries technique development and induces an ever-growing consumption and demand for lithium(Li).Among all the Li exploitation,extracting Li from spent LIBs would be a strategic and perspective approach,especially with the low energy consumption and eco-friendly membrane separation method.However,current membrane separation systems mainly focus on monotonous membrane design and structure optimization,and rarely further consider the coordination of inherent structure and applied external field,resulting in limited ion transport.Here,we propose a heterogeneous nanofluidic membrane as a platform for coupling multi-external fields(i.e.,lightinduced heat,electrical,and concentration gradient fields)to construct the multi-field-coupled synergistic ion transport system(MSITS)for Li-ion extraction from spent LIBs.The Li flux of the MSITS reaches 367.4 mmol m^(−2)h^(−1),even higher than the sum flux of those applied individual fields,reflecting synergistic enhancement for ion transport of the multi-field-coupled effect.Benefiting from the adaptation of membrane structure and multi-external fields,the proposed system exhibits ultrahigh selectivity with a Li^(+)/Co^(2+)factor of 216,412,outperforming previous reports.MSITS based on nanofluidic membrane proves to be a promising ion transport strategy,as it could accelerate ion transmembrane transport and alleviate the ion concentration polarization effect.This work demonstrated a collaborative system equipped with an optimized membrane for high-efficient Li extraction,providing an expanded strategy to investigate the other membrane-based applications of their common similarities in core concepts. 展开更多
关键词 Nanofluids ion separation lithium extraction Synergistic effect Spent lithium-ion battery
下载PDF
Full-chain enhanced ion transport toward stable lithium metal anodes
10
作者 Yuliang Gao Fahong Qiao +7 位作者 Nan Li Jingyuan You Yong Yang Jun Wang Chao Shen Ting Jin Xi Li Keyu Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期390-397,共8页
The dendrite growth that results from the slow electrode process kinetics prevents the lithium(Li) metal anode from being used in practical applications. Here, full-chain enhanced ion transport for stabilizing Li meta... The dendrite growth that results from the slow electrode process kinetics prevents the lithium(Li) metal anode from being used in practical applications. Here, full-chain enhanced ion transport for stabilizing Li metal anodes is proposed. Experimental and theoretical studies confirm that full-chain enhanced ion transport(electrocrystallization, mass transport in the electrolyte and diffusion in solid electrolyte interphase) under magnetoelectrochemistry contributes to a homogeneous, dense, and dendrite-free morphology. Specifically, the enhanced electrocrystallization behavior promotes the Li nucleation;the enhanced mass transport in the electrolyte alleviates the ion concentration gradient at the electrode surface, which helps to inhibit dendrite growth;and the enhanced diffusion in the solid electrolyte interphase further homogenizes the Li deposition behavior, obtaining regular and uniform Li particles.Consequently, the Li metal anode has exceptional cycling stability in both symmetric and full cells,and the pouch cell performs long cycles(170 cycles) in practice evaluation. This work advances fundamental knowledge of the magneto-dendrite effect and offers a new perspective on stabilizing metal anodes. 展开更多
关键词 lithium metal anodes ion transport Pouch cell lithium dendrites Magnetic field
下载PDF
A surfactant-modified composite separator for high safe lithium ion battery
11
作者 Botao Yuan Niandong He +5 位作者 Yifang Liang Liwei Dong Jipeng Liu Jiecai Han Weidong He Yuanpeng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期398-403,I0010,共7页
Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems... Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems of rapid capacity decay and safety issues due to the poor wettability with electrolytes and low thermal stability.Herein,a novel composite separator is proposed by introducing a surfactant of sodium dodecyl thiosulfate(SDS)into the polytetrafluoroethylene(PTFE)substrate with the binder of polyacrylic acid(PAA)through the suction filtration method.The introduction of PAA/SDS enhances the adsorption energy between PTFE substrate and electrolyte through density functional theory calculations,which improves wettability and electrolyte uptake of the separator significantly.The asachieved composite separator enables the LIBs to own high Li^(+)conductivity(0.64×10^(-3)S cm^(-1))and Li^(+)transference number(0.63),further leading to a high capacity retention of 93.50%after 500 cycles at 1 C.In addition,the uniform and smooth surface morphology of Li metal employed the composite separator after cycling indicates that the lithium dendrites can be successfully inhibited.This work indicates a promising route for the preparation of a novel composite separator for high safe LIBs. 展开更多
关键词 Composite separator PTFE SURFACTANT High safe lithium ion batteries
下载PDF
High Ion-Selectivity of Garnet Solid Electrolyte Enabling Separation of Metallic Lithium
12
作者 Haitian Zhang Jialiang Lang +8 位作者 Kai Liu Yang Jin Kuangyu Wang Yulong Wu Siqi Shi Li Wang Hong Xu Xiangming He Hui Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期236-242,共7页
Ionic selectivity is of significant importance in both fundamental science and practical applications.For instance,an ion-selective material allows the passage of a particular kind of ions while blocking the others,wh... Ionic selectivity is of significant importance in both fundamental science and practical applications.For instance,an ion-selective material allows the passage of a particular kind of ions while blocking the others,which could be used for purification of materials.Herein,the Li-ion-selectivity of a garnet-type solid electrolyte is discussed by comparing the difference of activation energy between different ions migrating in solids.The high ion-selectivity is confirmed by harvesting high-purity metallic lithium(99.98 wt%)from low-lithium-purity sources(80 wt%)at a moderate temperature(190℃).This gives it huge potential in separating lithium with impurities especially alkali and alkali-earth elements.The cost of metallic lithium production is only 25%of the international lithium price.The proposed electrochemical metallic lithium separating method is advantageous compared with the traditional process in terms of efficiency,safety,and cost. 展开更多
关键词 ion separating ionic selectivity lithium metal solid electrolyte
下载PDF
Improving Cyclic Stability and Rate Performance of Lithium Ion Batteries Using La^(3+)Modified LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)Cathode Materials
13
作者 杜玉喆 RUAN Zhefei +1 位作者 ZHANG Ruiming 张海宁 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期735-742,共8页
La_(4)NiLiO_(8)-coated NCM622 samples were prepared through a sol-gel method,and the electrochemical performance as cathode materials was investigated.It is revealed that part of the introduced La^(3+)ions produce a c... La_(4)NiLiO_(8)-coated NCM622 samples were prepared through a sol-gel method,and the electrochemical performance as cathode materials was investigated.It is revealed that part of the introduced La^(3+)ions produce a coating layer on the surface of NCM622 particles,while the rest occupy the 3b position of the lattice.The optimized sample exhibits a capacity retention of 96.54%after 100 cycles under 1C rate with a discharge specific capacity of 117.54 mAh·g^(-1)under 5C rate,much higher than those of the unmodified sample.The results show that the addition of La^(3+)ion can greatly improve the cyclic stability and the rate performance of NCM622. 展开更多
关键词 lithium ion batter La^(3+)doping NCM622 cycling stability rate performance
下载PDF
Facile construction of a multilayered interface for a durable lithium‐rich cathode
14
作者 Zhou Xu Yifei Yuan +8 位作者 Qing Tang Xiangkun Nie Jianwei Li Qing Sun Naixuan Ci Zhenjie Xi Guifang Han Lijie Ci Guanghui Min 《Carbon Energy》 SCIE EI CAS CSCD 2023年第9期74-87,共14页
Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO ... Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries. 展开更多
关键词 lattice oxygen release lithium‐rich manganese‐based oxide cathodes reconstructed multilayer interface spinel phase transition‐metal ion migration
下载PDF
Intensities and shifts of Lyman and Balmer lines of hydrogen-like ions in high density plasmas 被引量:1
15
作者 G.P.Zhao L.Liu +2 位作者 J.G.Wang R.K.Janev J.Yan 《Matter and Radiation at Extremes》 SCIE EI CAS 2018年第6期300-311,共12页
The spectral line intensities and line shifts of Lyman and Balmer series for transitions up to n=5 of hydrogen-like ion are studied in plasmas with densities and temperatures in the ranges n_(c)~10^(18)-10^(21)cm^(-3)... The spectral line intensities and line shifts of Lyman and Balmer series for transitions up to n=5 of hydrogen-like ion are studied in plasmas with densities and temperatures in the ranges n_(c)~10^(18)-10^(21)cm^(-3),T_(e)=0.3e1.2 eV respectively.The screened potential used to describe the interaction between charged particles includes the electron exchange-correlation and finite-temperature gradient effects and is valid for both weakly and strongly coupled plasmas.The dependencies of alpha,beta and gamma line shifts of Lyman and Balmer series on plasma density(for fixed temperature)and temperature(for fixed density)are investigated.The results for the H_(a)line shifts are compared with the available high-density experimental data. 展开更多
关键词 Screened coulomb interaction hydrogen-like ion Spectral lines High density plasmas
下载PDF
Insights on advanced g‐C_(3)N_(4)in energy storage:Applications,challenges,and future
16
作者 Xiaojie Yang Jian Peng +7 位作者 Lingfei Zhao Hang Zhang Jiayang Li Peng Yu Yameng Fan Jiazhao Wang Huakun Liu Shixue Dou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期22-78,共57页
Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages... Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications. 展开更多
关键词 g‐C_(3)N_(4) lithiumion batteries lithium‐sulfur batteries potassium‐ion batteries sodium‐ion batteries SUPERCAPACITORS
下载PDF
Nitrogen⁃doped 3D graphene⁃carbon nanotube network for efficient lithium storage
17
作者 XIE Jie XU Hongnan +3 位作者 LIAO Jianfeng CHEN Ruoyu SUN Lin JIN Zhong 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第10期1840-1849,共10页
A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor... A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1). 展开更多
关键词 GRAPHENE carbon nanotube hybrid material ANODE lithiumion battery
下载PDF
A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms
18
作者 Yuqi Luo Lu Gao Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期543-556,I0012,共15页
With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantage... With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantages.Among them,the earliest developed organic solid-state polymer electrolyte has a promising future due to its advantages such as good mechanical flexibility,but its poor ion transport performance dramatically limits its performance improvement.Therefore,single-ion conducting polymer electrolytes(SICPEs)with high lithium-ion transport number,capable of improving the concentration polarization and inhibiting the growth of lithium dendrites,have been proposed,which provide a new direction for the further development of high-performance organic polymer electrolytes.In view of this,lithium ions transport mechanisms and design principles in SICPEs are summarized and discussed in this paper.The modification principles currently used can be categorized into the following three types:enhancement of lithium salt anion-polymer interactions,weakening of lithium salt anion-cation interactions,and modulation of lithium ion-polymer interactions.In addition,the advances in single-ion conductors of conventional and novel polymer electrolytes are summarized,and several typical highperformance single-ion conductors are enumerated and analyzed in what way they improve ionic conductivity,lithium ions mobility,and the ability to inhibit lithium dendrites.Finally,the advantages and design methodology of SICPEs are summarized again and the future directions are outlined. 展开更多
关键词 lithium metal batteries Single-ion conductor Polymer electrolytes ion transport mechanism Li-ion transport number
下载PDF
Regulating the non-effective carriers transport for high-performance lithium metal batteries
19
作者 Simeng Wang Youchun Yu +2 位作者 Shaotong Fu Hongtao Li Jiajia Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期132-141,共10页
The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development o... The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development of lithium metal batteries.Herein,a separator complexion consisting of polyacrylonitrile(PAN)nanofiber and MIL-101(Cr)particles prepared by electrospinning is proposed to bind the anions from the electrolyte utilizing abundant effective open metal sites in the MIL-101(Cr)particles to modulate the transport of non-effective carriers.The binding effect of the PANM separator promotes uniform lithium metal deposition and enhances the stability of the SEI layer and long cycling stability of ultra-high nickel layered oxide cathodes.Taking PANM as the Li||NCM96 separator enables high-voltage cycling stability,maintaining 72%capacity retention after 800 cycles at a charging and discharging rate of 0.2 C at a cut-off voltage of 4.5 V and 0°C.Meanwhile,the excellent high-rate performance delivers a specific capacity of 156.3 mA h g^(-1) at 10 C.In addition,outstanding cycling performance is realized from−20 to 60°C.The separator engineering facilitates the electrochemical performance of lithium metal batteries and enlightens a facile and promising strategy to develop fast charge/discharge over a wide range of temperatures. 展开更多
关键词 Functional separators Metal-organic frameworks 3D continuous ion transport networks ELECTROSPINNING lithium metal batteries
下载PDF
Evaluation of the Performance of Lithium-Ion Accumulators for Photovoltaic Energy Storage
20
作者 Toussaint Tilado Guingane Dominique Bonkoungou +4 位作者 Eric Korsaga Dieudonné Simpore Soumaila Ouedraogo Zacharie Koalaga François Zougmore 《Energy and Power Engineering》 2023年第12期517-526,共10页
In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globall... In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globally available and the most widely distributed resource on Earth. However, the intermittency of this energy source considerably limits its expansion. To solve this problem, storage techniques are being used, in particular, electrochemical storage using lithium-ion batteries. In this article, we will evaluate the performance of lithium-ion batteries when integrated into a photovoltaic grid. To do this, modelling and simulation of a photovoltaic system connected to a lithium-ion battery storage system will be carried out using MATLAB/Simulink software. A diagnostic of the energy consumption of the Kaya Polytechnic University Centre will be carried out, and the data will then be used in the simulator to observe the behaviour of the PV-Lion system. The results obtained indicate that lithium-ion batteries can effectively meet the centre’s energy demand. In addition, it was observed that lithium-ion batteries perform better under high energy demand than the other battery technologies studied. Successive storage systems with the same capacity but different battery technologies were compared. It was found that these storage systems can handle a maximum power of 4 × 10<sup>5</sup> W for lead-acid batteries, 6.5 × 10<sup>5</sup> W for nickel-cadmium batteries, 8.5 × 10<sup>5</sup> W for nickel-metal-hydride batteries, and more than 10 × 10<sup>5</sup> W for lithium-ion technology. 展开更多
关键词 Photovoltaic Energy Energy Storage lithium-ion Accumulator MODELING MATLAB/Simulink Simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部