期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
Experimental study on secondary air mixing along the bed height in a circulating fluidized bed with a multitracer-gas method
1
作者 Qingyu Zhang Leming Cheng +3 位作者 Kun Li Qixun Kang Qiang Guo Chaogang Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期54-62,共9页
A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe... A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic. 展开更多
关键词 Circulating fluidized bed Secondary air injection gas mixing Multitracer-gas method
下载PDF
Investigation on Steam Gasification of High-metamorphous Anthracite Using Mixed Black Liquor and Calcium Catalyst 被引量:8
2
作者 Gul-e-Rana JAFFRI 张济宇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期575-583,共9页
The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation en... The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation energy, relative amount of harmful pollutant like sulphur containing gases have been investigated by thermogravimetry in steam gasification under temperature 750℃ to 950℃ at ambient pressure for three high-metarnorphous anthracites (Longyan, Fenghai and Youxia coals in Fujian Province). The mixed catalyst of 3%Ca+5%Na-BL increases greatly the carbon conversion and gasification rate constant by accelerating the gasification reaction C+H2O→CO+H2 due to presence of alkali surfacecompounds [COM], [CO2M] and exchanged calcium phenolate and calcium carboxylate (-COO)2. By adding CaCO3 into BL catalyst in gasification, in addition to improving the catalyst function and enhancing the carbon conversion, the effective desulphurization is also achieved, but the better operating temperature should be below 900℃. The homogenous and shrinking core models can be successfully employed to correlate the relations between the conversion and the gasification .time .and to estimate the reaction rate constant, The reaction acUvaUon energy and pre-exponential factor are estimated and the activation energy for mixed catalyst is in a range of 98.72-166.92 kJ·mol^-1, much less than 177.50-196.46 kJ·mol^-1 for non-catalytic steam gasification for three experimental coals. 展开更多
关键词 mixed catalyst CALCIUM black liquor THERMOGRAVIMETRY steam gasification kinetics sulphur containing gas
下载PDF
Operational Model for Evaluating the Permeation of Mixed Gas Through Poly(dimethylsiloxane) Membrane 被引量:1
3
作者 武法文 李磊 +2 位作者 徐志红 谭淑娟 张志炳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期700-707,共8页
An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental anal... An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental analysis of the mixed gas transport character. This model is tested using the binary and ternary mixed gas with various compositions through the PDMS membranes, and the predicted data of the permeation flux and the compositions of the permeated gas are in good agreement with the experimental ones, which indicates that the op-erational model is applicable for the evaluation of the permeation performance of mixed gas through PDMS mem-branes. 展开更多
关键词 operational model poly (dimethylsiloxane) membrane mixed gas permeation performance
下载PDF
Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53 被引量:6
4
作者 Haitao Zhu Xingming Jie +3 位作者 Lina Wang Guodong Kang Dandan Liu Yiming Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期781-790,共10页
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ... Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization. 展开更多
关键词 Post-functionalized S-MIL-53 mixed matrix hollow fiber membranes CO2 permeance Plasticization gas separation
下载PDF
Synergistic Effect in Mixed Capillary Gas Chromatographic Stationap Phases Containing Heptakis(2,3,6-tri-o-pentyl)-β-cyclodextrin and Dibenzo-18-crown-6 被引量:1
5
作者 Li Ming YUAN Ruo Nong FU +3 位作者 Xue Xian CHEN Shi Hong GUl Rong Ji DAI (Chemistry Department of Yunnan Normal University.Kunming 650092)(Department of Chemical Engineering.Beijing institute of Technology,BEijing 100081)(Solar Energy Research Institute ofyunna 《Chinese Chemical Letters》 SCIE CAS CSCD 1999年第3期223-226,共4页
used-silical capillary columns containing heptakis(2、3、6-tri-o-pentyl)-β-cyclodextrinand dibenzo-18-crown-6 were prepared.By studying the selectivity of mixed stationary phases forsome solute pairs.as well a... used-silical capillary columns containing heptakis(2、3、6-tri-o-pentyl)-β-cyclodextrinand dibenzo-18-crown-6 were prepared.By studying the selectivity of mixed stationary phases forsome solute pairs.as well as comparing with the heptakis(2.3、6-tri-O-pentyl)-β-cyclodextrin and thedibenzo-18-crown-6 used as individual stationary phase、the synergistic effects were observed.These effects were affected by the column temperature.mixed ratio and linear velocity of carrier gas. 展开更多
关键词 gas chromatography mixed stationary phase synergistic effect heptakis(2.3.6-tri-o-pentyl)-β-cyclodextrin DIBENZO-18-CROWN-6
下载PDF
Distinguished discriminatory separation of CO2 from its methane-containing gas mixture via PEBAX mixed matrix membrane 被引量:1
6
作者 Pouria Abbasszadeh Gamali Abbass Kazemi +4 位作者 Reza Zadmard Morteza Jalali Anjareghi Azadeh Rezakhani Reza Rahighi Mohammad Madani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期73-80,共8页
Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based n... Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized. 展开更多
关键词 mixed matrix membrane Fumed silica Binary gas mixture CO2/CH4 separation
下载PDF
Design and analysis of dual mixed refrigerant processes for high-ethane content natural gas liquefaction
7
作者 Ting He Wensheng Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期354-364,共11页
Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas... Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas,which are not applicable to natural gas with high ethane content.To fill this gap,three dual mixed refrigerant processes are proposed for simulation study of high-ethane content natural gas liquefaction.The proposed processes are optimized by a combination method of sequence optimization and genetic algorithm.Comparatively analysis is conducted to evaluate the three processes from the energetic and exergetic points of view.The results show that the power consumption of Process 3 which compressing natural gas after distillation is the lowest.For safety or other considerations,some common compositions of the mixed refrigerant may need to be removed under certain circumstances.Considering this,case studies of mixed refrigerant involving six composition combinations are carried out to investigate the effects of refrigerant selection on the process performance. 展开更多
关键词 Natural gas liquefaction ETHANE Dual mixed refrigerant cycle Cryogenic distillation Refrigerant selection
下载PDF
A study on mixed coal simulation soft layer of gas adsorption
8
作者 LI Shu-gang ZHAO Peng-xiang PAN Hong-yu HUANG Jin-xing 《Journal of Coal Science & Engineering(China)》 2011年第3期290-293,共4页
Based on the single coal adsorption gas, hard coal and soft coal of intake airway in Shanxi Heshun Tianchi Coal Mine were chosen to simulate the soft coal seams in coalbed as those in different qualities are mixed wit... Based on the single coal adsorption gas, hard coal and soft coal of intake airway in Shanxi Heshun Tianchi Coal Mine were chosen to simulate the soft coal seams in coalbed as those in different qualities are mixed with delamination. Experiments on characteristics of adsorption gas of hard coal and soft coal in different quality ratios were done according to the Langmuir single molecule layer absorption theory. Gas constant mensuration instrument WY-98B was used during the experiments. Isothermal adsorption curves, adsorption constants a and b of the mixed coal samples in different quality ratios were established for qualitative and quantitative analysis. The relationship curves of adsorption quantity with changing pressure and variation equation of adsorption constants a, b with changing thickness ratio shows that the thickness of soft layer and hard coal approximately equal, thus resulting in outburst at greatest risk, then a theoretical base for the mechanism of coal and gas outburst has been put forward and a technical support scheme for engineering control of gas outburst is laid out. 展开更多
关键词 mixed coal soft layer coal and gas outburst ADSORPTION
下载PDF
Synergistic Effect in Special Selectivity Mixed Gas Chromatographic Stationary Phase in the Separation of Aromatic Compounds
9
作者 Yuan, LM Fu, RN +2 位作者 Gui, SH Chen, XX Dai, RJ 《Chinese Chemical Letters》 SCIE CAS CSCD 1998年第2期151-155,共5页
The gas chromatographic separations of aromatic compounds using special mixed stationary phases consisting of pp-beta-CD+AgNO3, pp-beta-CD+TINO3, pp-beta-CD+di-n-butly phthalate, pp-beta-CD+BPBHpB liquid crystalline, ... The gas chromatographic separations of aromatic compounds using special mixed stationary phases consisting of pp-beta-CD+AgNO3, pp-beta-CD+TINO3, pp-beta-CD+di-n-butly phthalate, pp-beta-CD+BPBHpB liquid crystalline, and bentone-34+AgNO3 were investigated. Besides pp-beta-CD+di-n-butyl phthalate, most of the separations deviated from the additivity and a synergistic effect was observed. The separation effects depend on the temperature and how mixing is accomplished. 展开更多
关键词 gas chromatography mixed stationary phase synergistic effect aromatic compounds
全文增补中
Assembling ionic liquid into porous molecular filler of mixed matrix membrane to trigger high gas permeability,selectivity,and stability for CO_(2)/CH_(4) separation 被引量:2
10
作者 Liting Yu Liqin Hao +8 位作者 Yang Feng Jia Pang Mengwei Guo Liangjun Li Weidong Fan Lili Fan Rongming Wang Zixi Kang Daofeng Sun 《Nano Research》 SCIE EI CSCD 2024年第5期4535-4543,共9页
As an emerging zero-dimensional nano crystalline porous material,porous organic cages(POCs)with soluble properties in organic solvents,are promising candidates as molecular fillers in mixed matrix membranes(MMMs).The ... As an emerging zero-dimensional nano crystalline porous material,porous organic cages(POCs)with soluble properties in organic solvents,are promising candidates as molecular fillers in mixed matrix membranes(MMMs).The pore structure of POCs should be adjusted to trigger efficient gas separation performance,and the interaction between filler and matrix should be optimized.In this work,ionic liquid(IL)was introduced into the molecular fillers of CC3,to construct the IL@CC3/PIM-1 membrane to effectively separate CO_(2) from CH_(4).The advantages of doping IL include:(1)narrowing the cavity size of POCs from 4.4 to 3.9Åto enhance the diffusion selectivity,(2)strengthening the CO_(2) solubility to heighten the gas permeability,and(3)improving the compatibility between filler and matrix to upgrade membrane stability.After the optimization of the membrane composite,the IL@CC3/PIM-1-10%membrane possesses the CO_(2) permeability of 7868 Barrer and the CO_(2)/CH_(4) selectivity of 73.4,which compared to the CC3/PIM-1-10%membrane,improved by 15.9%and 106.2%,respectively.Furthermore,the membrane has maintained a stable separation performance at varied temperatures and pressures during the long-term test.The proposed method offers an efficient way to improve the performance of POCs-based MMMs in gas separation. 展开更多
关键词 porous organic cage mixed matrix membrane ionic liquid gas separation
原文传递
The numerical simulation of a new double swirl static mixer for gas reactants mixing 被引量:5
11
作者 Zhuokai Zhuang Jingtian Yan +3 位作者 Chenglang Sun Haiqiang Wang Yuejun Wang Zhongbiao Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2438-2446,共9页
For the nitrogen oxide removal processes,high performance gas mixer is deeply needed for the injection of NH3 or O3.In this study,a new type of double swirl static mixer in gas mixing was investigated using computatio... For the nitrogen oxide removal processes,high performance gas mixer is deeply needed for the injection of NH3 or O3.In this study,a new type of double swirl static mixer in gas mixing was investigated using computational fluid dynamics(CFD).The results obtained using Particle Image Velocimetry(PIV)correlated well with the results obtained from simulation.The comparisons in pressure loss between the experimental results and the simulation results showed that the model was suitable and accurate for the simulation of the static mixer.Optimal process conditions and design were investigated.When L/D equaled 4,coefficient of variation(COV)was<5%.The inlet velocity did not affect the distributions of turbulent kinetic energy.In terms of both COV and pressure loss,the inner connector is important in the design of the static mixer.The nozzle length should be set at 4 cm.Taking both COV and pressure loss into consideration,the optimal oblique degree is 450.The averaged kinetic energy changed according to process conditions and design.The new static mixer resulted in improved mixing performance in a more compact design.The new static mixer is more energy efficient compared with other SV static mixers.Therefore,the double swirl static mixer is promising in gas mixing. 展开更多
关键词 CFD PIV gas mixing Double swirl static mixer Pressure loss
下载PDF
Horizontal gas mixing in rectangular fluidized bed:A novel method for gas dispersion coefficients in various conditions and distributor designs 被引量:2
12
作者 Asheesh Nautiyal Chien-Song Chyang +1 位作者 Pin-Wei Li Hsin-Yung Hou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第7期848-861,共14页
In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for ... In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for tracer gas dispersion in the bed. An analytical solution is derived to estimate the dispersion coefficients, Dxand Dy, in a horizontal plane. The concentration profiles at different sampling heights with various gas velocities are plotted.Subsequently, to estimate the dispersion coefficients, surface fitting of the obtained analytical solution to the experimental data is performed. The dispersion coefficients obtained from this model are compared with those of a conventional model. Additionally, the effect of walls, bed height and gas injection rate on the dispersion coefficients in a horizontal plane is investigated, and the effect of distributor design on the dispersion coefficients in a horizontal plane is investigated with different tracer positions. It is found that Dxand Dyare nearly equivalent at a lower tracer gas ratio of the injected gas to the total gas flow rate. It is also demonstrated that the effect of bed height on Dxis minor. This model is also able to estimate the dispersion coefficients in the case of a multihorizontal nozzle distributor. 展开更多
关键词 gas dispersion coefficient Horizontal mixing Wall effect Surface modeling
下载PDF
Numerical Simulation and Analysis of Migration Law of Gas Mixture Using Carbon Dioxide as Cushion Gas in Underground Gas Storage Reservoir 被引量:1
13
作者 Chuan-Kai Niu Yu-Fei Tan 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第3期121-128,共8页
One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and ma... One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and manage the migration of the mixed zone,an understanding of the mechanism of CO2and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper,a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City,China.Using the validated model,the mixed characteristic of CO2and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly,the impacts of the following factors on the migration mechanism are studied: the ratio of CO2injection,the reservoir porosity and the initial operating pressure. Based on the results,the optimal CO2injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2as cushion gas for UGSR in real projects. 展开更多
关键词 underground gas storage reservoir(UGSR) cushion gas carbon dioxide mixed zone porous media
下载PDF
Mixed Conduction in BaCe0.8Pr0.2O3-α Ceramic 被引量:1
14
作者 Mao-yuan Wang Li-gan Qiu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第3期286-290,共5页
BaCe0.8Pr0.2O3-α ceramic was synthesized by high temperature solid-state reaction. The structural characteristics and the phase purity of the crystal were determined using powder X-ray diffraction analysis. By using ... BaCe0.8Pr0.2O3-α ceramic was synthesized by high temperature solid-state reaction. The structural characteristics and the phase purity of the crystal were determined using powder X-ray diffraction analysis. By using the methods of AC impedance spectroscopy, gas concentration cell and electrochemical pumping of hydrogen, the conductivity and ionic transport number of BaCe0.8Pr0.2O3-α were measured, and the electrical conduction behavior of the material was investigated in different gases in the temperature range of 500-900℃. The results indicate that the material was of a single perovskite-type orthorhombic phase. From 500℃ to 900 ℃, electronic-hole conduction was dominant in dry and wet oxygen, air or nitrogen, and the total conductivity of the material increased slightly with increasing oxygen partial pressure in the oxygen partial pressure range studied. Ionic conduction was dominant in wet hydrogen, and the total conductivity was about one or two orders of magnitude higher than that in hydrogen-free atmosphere (oxygen, air or nitrogen) 展开更多
关键词 BaCe0.8Pr0.2O3-α AC impedance gas concentration cell Electrochemical pumping of hy-drogen mixed conduction
下载PDF
Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process 被引量:2
15
作者 Jiahao Wang Peiyuan Ni +2 位作者 Chao Chen Mikael Ersson Ying Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期844-856,共13页
A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a... A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%. 展开更多
关键词 Ruhrstahl-Heraeus refining gas blowing nozzle angle circulation flow rate mixing time multiphase flow
下载PDF
Effect of Welding Parameters on GTA Weld Shape for Pure Iron Plate under Ar-O_2 Mixed Shielding
16
作者 ShanDing LU H.Fujii K.Nogi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第3期359-366,共8页
Weld shape variation for different welding parameters is investigated on pure iron plate under gas tungsten arc (GTA) welding with argon-oxygen mixed shielding. Results showed that small addition of oxygen to the ar... Weld shape variation for different welding parameters is investigated on pure iron plate under gas tungsten arc (GTA) welding with argon-oxygen mixed shielding. Results showed that small addition of oxygen to the argon base shielding gas can effectively adjust the oxygen adsorption to the molten pool. An inward Marangoni convection occurs on the pool surface when the oxygen content in the weld pool is over the critical value, 80×10^-6, for pure iron plate under Ar-0.3%O2 mixed shielding. Low oxygen content in the weld pool changes the inward Marangoni to an outward direction under the Ar-0.1%O2 shielding. The GTA weld shape depends to a large extent on the pattern and strength of the Marangoni convection on the pool surface, which is determined by the content of surface active element, oxygen, in the weld pool and the welding parameters. The strength of the Marangoni convection on the liquid pool is a product of the temperature coefficient of the surface tension (dσ/dT) and the temperature gradient (dT/dr) on the pool surface. Different welding parameters will change the temperature distribution and gradient on the pool surface, and therefore, affect the strength of Marangoni convection and the weld shape. 展开更多
关键词 Weld shape OXYGEN Marangoni convection mixed shielding gas
下载PDF
New insight into prediction of phase behavior of natural gas hydrate by different cubic equations of state coupled with various mixing rules
17
作者 Amir Hossein Saeedi Dehaghani 《Petroleum Science》 SCIE CAS CSCD 2017年第4期780-790,共11页
Progress in hydrate thermodynamic study necessitates robust and fast models to be incorporated in reservoir simulation softwares. However, numerous models presented in the literature makes selection of the best,proper... Progress in hydrate thermodynamic study necessitates robust and fast models to be incorporated in reservoir simulation softwares. However, numerous models presented in the literature makes selection of the best,proper predictive model a cumbersome task. It is of industrial interest to make use of cubic equations of state(EOS) for modeling hydrate equilibria. In this regard, this study focuses on evaluation of three common EOSs including Peng–Robinson, Soave–Redlich–Kwong and Valderrama–Patel–Teja coupled with van der Waals and Platteeuw theory to predict hydrate P–T equilibrium of a real natural gas sample. Each EOS was accompanied with three mixing rules, including van der Waals(vd W),Avlonitis non-density dependent(ANDD) and general nonquadratic(GNQ). The prediction of cubic EOSs was in sufficient agreement with experimental data and with overall AARD% of less than unity. In addition, PR plus ANDD proved to be the most accurate model in this study for prediction of hydrate equilibria with AARD% of 0.166.It was observed that the accuracy of cubic EOSs studied in this paper depends on mixing rule coupled with them,especially at high-pressure conditions. Lastly, the present study does not include any adjustable parameter to be correlated with hydrate phase equilibrium data. 展开更多
关键词 gas Hydrate Cubic equation of state mixing rule Thermodynamic modeling
下载PDF
A successful case of hydrocarbon dew point analysis during mixing of natural gases in transmission pipeline
18
作者 王玮 段纪淼 +4 位作者 李明 信鹏 史博会 张文伟 宫敬 《Journal of Central South University》 SCIE EI CAS 2013年第9期2454-2458,共5页
The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and... The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and may cause safety problem.A successful case of hydrocarbon dew point(HCDP)analysis is demonstrated during the mixing of natural gases in the transmission pipeline.Methods used to predict the HCDP are combined with equations of state(EOS)and characterization of C6+heavy components.Predictions are compared with measured HCDP with different concentrations of mixed gases at a wide range of pressure and temperature scopes.Software named"PipeGasAnalysis"is developed and helps to systematic analyze the condensation problem,which will provide the guidance for the design and operation of the network. 展开更多
关键词 natural gas mixing proportion phase behaviour hydrocarbon dew point liquid condensation
下载PDF
Forecast of natural gas supply and demand in China under the background of “Dual Carbon Targets” 被引量:1
19
作者 JIA Ailin CHENG Gang +1 位作者 CHEN Weiyan LI Yilong 《Petroleum Exploration and Development》 SCIE 2023年第2期492-504,共13页
As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternative... As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternatives Planning System(LEAP) model was improved by using new parameters including comprehensive energy efficiency and terminal effective energy consumption. The Back Propagation(BP) Neural Network–LEAP model was proposed to predict key data such as total primary energy consumption, energy mix, carbon emissions from energy consumption, and natural gas consumption in China. Moreover, natural gas production in China was forecasted by the production composition method. Finally, based on the forecast results of natural gas supply and demand, suggestions were put forward on the development of China’s natural gas industry under the background of “Dual Carbon Targets”. The research results indicate that under the background of carbon peak and carbon neutrality, China’s primary energy consumption will peak(59.4×10^(8)tce) around 2035, carbon emissions from energy consumption will peak(103.4×10^(8)t) by 2025, and natural gas consumption will peak(6100×10^(8)m^(3)) around 2040, of which the largest increase will be contributed by the power sector and industrial sector. China’s peak natural gas production is about(2800–3400)×10^(8)m^(3), including(2100–2300)×10^(8)m^(3)conventional gas(including tight gas),(600–1050)×10^(8)m^(3)shale gas, and(150–220)×10^(8)m^(3)coalbed methane. Under the background of carbon peak and carbon neutrality, the natural gas consumption and production of China will further increase, showing a great potential of the natural gas industry. 展开更多
关键词 carbon peak and carbon neutrality energy mix carbon emissions natural gas consumption natural gas produc-tion new energy system terminal consumption scale production supply storage and marketing
下载PDF
Multichannel Discharge Characteristics of Gas Switch Gap in SF_6-N_2 or SF_6-Ar Gas Mixtures Under Nanosecond Triggering Pulses
20
作者 常家森 王虎 +1 位作者 张乔根 邱爱慈 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第6期719-723,共5页
Experiments were carried out to ascertain multichannel discharge characteristics in a self-designed coaxial field-distortion gas switch filled with SFa-N2 or SF6-Ar gas mixtures of different mixing ratios. In these ex... Experiments were carried out to ascertain multichannel discharge characteristics in a self-designed coaxial field-distortion gas switch filled with SFa-N2 or SF6-Ar gas mixtures of different mixing ratios. In these experiments, the pressure varied from 0.1 MPa to 0.2 MPa, the voltage pulse peak applied to the switch was in the range from 40 kV to 78 kV, and the pulse rise time was 11 ns. The static breakdown strength of the gas switch gap in the switch was also measured. The results show that in general the average number of discharge channels for SF6-Ar or SF6-N2 gas mixture which contains less SFa is larger than that for gas mixture which contains more SF6, however, the average number of channels almost keeps constant as the gas mixing ratio varies when the pulse rise rate is high enough. The static breakdown strength of the gas switch gap decreases slightly as the content of argon or nitrogen increases. 展开更多
关键词 multichannel discharge gas dielectric strength SFB-N2 SF6-Ar mixing ratio
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部