Hydrogenase is a paradigm of highly efficient biocatalyst for H_(2) production and utilization evolved in nature. A dilemma is that despite the high activity and efficiency expected for hydrogenases as promising catal...Hydrogenase is a paradigm of highly efficient biocatalyst for H_(2) production and utilization evolved in nature. A dilemma is that despite the high activity and efficiency expected for hydrogenases as promising catalysts for the hydrogen economy, the poor oxygen tolerance and low yield of hydrogenases largely hinder their practical application. In these years, the enigmas surrounding hydrogenases regarding their structures, oxygen tolerance, mechanisms for catalysis, redox intermediates, and proton-coupled electron transfer schemes have been gradually elucidated;the schemes, which can well couple hydrogenases with other highly efficient(in)organic and biological catalysts to build novel reactors and drive valuable reactions, make it possible for hydrogenases to find their niches. To see how scientists put efforts to tackle this issue and design novel reactors in the fields where hydrogenases play crucial roles, in this review,recent advances were summarized, including different strategies for protecting enzyme molecules from oxygen, enzyme-based assembling systems for H_(2) evolution in the photoelectronic catalysis, enzymatic biofuel cells for H_(2) utilization and storage and the efficient electricity-hydrogen-carbohydrate cycle for high-purity hydrogen and biofuel automobiles. Limitations and future perspectives of hydrogenasebased applications in H_(2) production and utilization with great impact are discussed. In addition, this review also provides a new perspective on the use of biohydrogen in healthcare beyond energy.展开更多
Two mono iron complexes Fe(CO)2PR3(NN) (R = Cy (3), Ph (4), NN = o-phenylenediamine dianion ligand, N2H2Ph2-) derived from the ligand substitution of Fe(CO)3hPR3 by the NN ligand were isolated and structur...Two mono iron complexes Fe(CO)2PR3(NN) (R = Cy (3), Ph (4), NN = o-phenylenediamine dianion ligand, N2H2Ph2-) derived from the ligand substitution of Fe(CO)3hPR3 by the NN ligand were isolated and structurally characterized by single crystal X-ray diffraction. They have a similar first coordination sphere and oxidation state of the iron center as the [Fe]-hydrogenase active site, and can be a model of it IR demonstrated that the effect of the NN ligand on the coordinated CO stretch- ing frequencies was due to its excellent electron donating ability. The reversible protonation/deprotonation of the NN ligand was identified by infrared spectroscopy and density functional theory computation. The NN ligand is an effective proton acceptor as the internal base of the cysteine thiolate ligand in [Fe]-hydrogenase. The electrochemical properties of complexes 3, 4 were investigated by cyclic voltammograms. Complex 3 catalyzed the transfer hydrogenation of benzoquinone to hydroquinone effectively under mild conditions.展开更多
AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males. METHODS: A case-cont...AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males. METHODS: A case-control study was conducted in 190 cases and 223 population-based controls. ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A)genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC). Information on smoking and drinking was collected and odds ratio (OR) was estimated. RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Signif icant interactions between ADH2, ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a signif icantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ADH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with the ALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele. CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also signifi cant gene-gene and gene- environment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.展开更多
A component (s-factor) with obvious promoting effect on hydrogen evolution of hydrogenase has beenisolated and extracted from a Cell=free preparation of Spirulina platensis.The effect of the s-factor in the re-actio...A component (s-factor) with obvious promoting effect on hydrogen evolution of hydrogenase has beenisolated and extracted from a Cell=free preparation of Spirulina platensis.The effect of the s-factor in the re-action system is similar to that of Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>, but is coupled with ligh. The s-factor has the maximumabsorption peak at 620 nm in the oxidized state, at 590 nm in the reduced state. The partially purifieds-factor showed two bands by SDS-PAGE and is distinctly different from phycocyanin,which has nochange of oxidized state and reduced state absorption spectra, and also has no promoting effect onhydrogenase of Spirulina platensis under the light.展开更多
Photocatalytic reduction of CO2 to CO is a promising approach for storing solar energy in chemicals and mitigating the greenhouse effect of CO2.Our recent studies revealed that[(μ-bdt)Fe2(CO)6](1,bdt=benzene-1,2-dith...Photocatalytic reduction of CO2 to CO is a promising approach for storing solar energy in chemicals and mitigating the greenhouse effect of CO2.Our recent studies revealed that[(μ-bdt)Fe2(CO)6](1,bdt=benzene-1,2-dithiolato),a[FeFe]-hydrogenase model with a rigid and conjugate S-to-S bridge,was catalytically active for the selective photochemical reduction of CO2 to CO,while its analogous complex[(μ-edt)Fe2(CO)6](2,edt=ethane-1,2-dithiolato)was inactive.In this study,it was found that the turnover number of 1 for CO evolution reached 710 for the 1/[Ru(bpy)3]2+/BIH(BIH=1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]-imidazole)system under optimal conditions over 4.5 h of visible-light irradiation,with a turnover frequency of 7.12 min−1 in the first hour,a high selectivity of 97%for CO,and an internal quantum yield of 2.8%.Interestingly,the catalytic selectivity of 1 can be adjusted and even completely switched in a facile manner between the photochemical reductions of CO2 to CO and of protons to H2 simply by adding different amounts of triethanolamine to the catalytic system.The electron transfer in the photocatalytic system was studied by steady-state fluorescence and transient absorption spectroscopy,and a plausible mechanism for the photocatalytic reaction was proposed.展开更多
Hydrogen evolution was detected in an artificial system composed of light-harvesting unit of purified photosystem I, catalyst of hydrogenase, methyl viologen and electron donor under radiation. Absorption spectral fea...Hydrogen evolution was detected in an artificial system composed of light-harvesting unit of purified photosystem I, catalyst of hydrogenase, methyl viologen and electron donor under radiation. Absorption spectral features confirmed that electron transfer from electron donors to proton was via a photoinduced reductive process of methyl viologen.展开更多
A comparative evaluation of three different cell-disruption methods for the release of hydrogenase from H2 -producing bacterium E. harbinenase YUAN-3T was investigated. The cell disruption techniques evaluated in this...A comparative evaluation of three different cell-disruption methods for the release of hydrogenase from H2 -producing bacterium E. harbinenase YUAN-3T was investigated. The cell disruption techniques evaluated in this study were uhrasonieation, high-speed homogenization and bead milling. Ultrasonication process was found to be the most effective method in terms of cell disruption. As for the specific activity of hydrogenase, there is no significant difference among the three kinds of methods. An orthogonal experiment L9 (34) was designed to optimize the procedures of ultrasonication for cell disruption. The optimized uhrasonication disruption conditions were the treatment at 250 W, 20 kHz, 30 s/15 s and 0. 30 g bacteria cell (dry weight) in 15 mL suspension buffer. As a result, the optimized conditions allow the hydrogenase to maintain the active form with the yield of 93.95 mg protein/g cell and the final activity of 0. 252 μmol/min/mg protein. In this work, we have developed and optimized an ultrasonication protocol for YUAN-3T cel]s, which is adapted to laboratory- scale release of hydrogenase proteins.展开更多
In order to evaluate the hydrogen-producing efficiency of anaerobic activated sludge in Anaerobic Baffled Reactor(ABR)fermentation processes,the optimal conditions for hydrogen producing hydrogenase method on methyl v...In order to evaluate the hydrogen-producing efficiency of anaerobic activated sludge in Anaerobic Baffled Reactor(ABR)fermentation processes,the optimal conditions for hydrogen producing hydrogenase method on methyl viologen(MV)assay was used to detect the hydrogen production activity of the activated sludge.The most favorable parameters such as 0.6 mL sodium acetate buffer(pH 5.0),100 μL lysozyme,0.2 mL sodium dibromoethane(9.0 mmol/L)and 0.7 mmol/L iron added into 1 mL activated sludge(2.66~26.64 gMLVSS/L)were found.Furthermore,reaction temperature and culture time were detected as 40 ℃ and 30 min respectively.Sodium thiosulfate and sodium sulfides were taken as the reducing agent while trichloroacetic acid as terminator.Under the MV optimal conditions,micro-toxic Dimethyl sulfoxide(DMSO)get higher security and better accuracy.The sensitivity of the detection methods(DMSO as electron carrier)was increased by more than 30%.The results show that the optimal conditions can be applied to measure hydrogenase activity correlating with its specific hydrogen production rate in a hydrogen-producing anaerobic activated sludge system.展开更多
A model compound for the active sites of Fe-only hydrogenases, [Fe2(SCH2)2N(3- PhCF3)(CO)6]2, has been synthesized and structurally characterized by single-crystal X-ray diffraction. It crystallizes in tetragona...A model compound for the active sites of Fe-only hydrogenases, [Fe2(SCH2)2N(3- PhCF3)(CO)6]2, has been synthesized and structurally characterized by single-crystal X-ray diffraction. It crystallizes in tetragonal, space group P43, with α = 12.6324(3), b = 12.6324(3), c = 24.0453(12) A, V = 3837.1(2) A^3, Z= 4, Fe4S4N2C30O12F6H16, Mr= 1062.09, Dc= 1.839 g/cm^3, μ(MoKα) = 1.791 mm^-1, F(000) = 2112, T= 293(2) K, Flack = 0.034(9), R = 0.0282 and wR = 0.0685 for 8148 observed reflections with I 〉 20(I). In the title compound, each Fet atom is coordinated by three terminal carbonyl C atoms (Fe-C: 1.783(3)- 1.816(3) A), two bridging S atoms (Fe-S: 2.2609(7)-2.2757(8) A) and another Fe atom (Fe-Fe 2.5011(5) A), adopting a distorted octahedral geometry with trans angles ranging from 152.45(11) to 157.77(10)°.展开更多
A new five-heterocyclic-biphosphine-substituted Fe-only hydrogenase mimic,[(μ-pdt)Fe_2(CO)_5]_2(PTP)(1),has been synthesized at room temperature. 1·H_2O crystallizes in triclinic system,space group P1,wi...A new five-heterocyclic-biphosphine-substituted Fe-only hydrogenase mimic,[(μ-pdt)Fe_2(CO)_5]_2(PTP)(1),has been synthesized at room temperature. 1·H_2O crystallizes in triclinic system,space group P1,with a = 11.5897(4),b = 13.6156(4),c = 18.0333(6) ?,α = 76.306(3),β = 72.742(3),γ = 68.939(3)°,V = 2508.84(14) ?~3,Dc = 1.570 g/cm3,Z = 2,M_r = 1186.37,F(000) = 1204,the final R = 0.0748,and wR = 0.2012. In the tetranuclear complex 1·H_2O,each [2Fe_2S] butterfly unit is attached to one P atom of the diphosphine bridge and exhibits a square-pyramidal geometry. Complex 1 was characterized by elemental analysis,IR spectra,UV-vis absorption spectra,~1H-NMR and ^(31)P-NMR. The cyclic voltammetry behavior of compound 1 was investigated as well.展开更多
A new 2Fe2 S complex[(2-C5H4N)N(μ-CH2S)2Fe2(CO)6](1) related to the active site of[FeFe]-hydrogenase was obtained by treating(HS)2Fe2(CO)6 with(pyridin-2-ylazanediyl)dimethanol.Protonation occurred at t...A new 2Fe2 S complex[(2-C5H4N)N(μ-CH2S)2Fe2(CO)6](1) related to the active site of[FeFe]-hydrogenase was obtained by treating(HS)2Fe2(CO)6 with(pyridin-2-ylazanediyl)dimethanol.Protonation occurred at the pyridine nitrogen atom when two equivalents of HBF4·OEt2acid were added to the toluene solution of 1,leading to the formation of[(2-C5H4NH)N(μ-CH2S)2Fe2(CO)6]·BF4·OEt2(1H~+),whose molecular structure was further established by singlecrystal X-ray analysis.Complex 1 crystallizes in the monoclinic system,space group P21/n with α=7.728(3),b = 11.825(4),c = 17.888(6) A,β= 92.968(5)°,while complex 1H~+ crystallizes in the triclinic system,space group P1 with a = 7.672(4),b = 10.382(5),c = 16.480(10) A,α=106.575(13),β= 93.18(3),γ=104.262(17)°.展开更多
以Fe(CO)_(5)和含一个巯基的配体为原料,通过多步反应合成了两个新的[FeFe]氢化酶模拟物1和2;构建了以化合物1和2为光催化剂、藻红B钠盐(EBS^(2-))为光敏剂、三乙胺(TEA)为电子给体和质子源的三组分光催化产氢体系,该体系在pH值为12且...以Fe(CO)_(5)和含一个巯基的配体为原料,通过多步反应合成了两个新的[FeFe]氢化酶模拟物1和2;构建了以化合物1和2为光催化剂、藻红B钠盐(EBS^(2-))为光敏剂、三乙胺(TEA)为电子给体和质子源的三组分光催化产氢体系,该体系在pH值为12且体积比为1∶1的CH_(3)CN/H_(2)O溶液中,经可见光(λ>420 nm)照射4 h,最大产氢量为205.0μmol,相对于化合物2的催化转化数(TON)为51.4;研究表明,配体中含有较多的质子捕获位点,有利于形成产氢活性中间体H 2-2Fe2S(η2-H 2-Fe II Fe I)物种,从而提高催化剂的产氢活性,光生电子从1*EBS^(2-)化合物1和2的第一个电子的转移均为热力学可行过程,到化合物1和2的第二个电子转移是热力学不可行过程。展开更多
基金supported by the National Key Research and Development Program of China (Nos. 2020YFA0907300, 2020YFA0907800)the National Natural Science Foundation of China (No. 22077069)+1 种基金the Natural Science Foundation of Tianjin (Nos. 19JCZDJC33400 and 21JCYBJC00310)the Fundamental Research Funds for the Central Universities, Nankai University (No. 63201111)。
文摘Hydrogenase is a paradigm of highly efficient biocatalyst for H_(2) production and utilization evolved in nature. A dilemma is that despite the high activity and efficiency expected for hydrogenases as promising catalysts for the hydrogen economy, the poor oxygen tolerance and low yield of hydrogenases largely hinder their practical application. In these years, the enigmas surrounding hydrogenases regarding their structures, oxygen tolerance, mechanisms for catalysis, redox intermediates, and proton-coupled electron transfer schemes have been gradually elucidated;the schemes, which can well couple hydrogenases with other highly efficient(in)organic and biological catalysts to build novel reactors and drive valuable reactions, make it possible for hydrogenases to find their niches. To see how scientists put efforts to tackle this issue and design novel reactors in the fields where hydrogenases play crucial roles, in this review,recent advances were summarized, including different strategies for protecting enzyme molecules from oxygen, enzyme-based assembling systems for H_(2) evolution in the photoelectronic catalysis, enzymatic biofuel cells for H_(2) utilization and storage and the efficient electricity-hydrogen-carbohydrate cycle for high-purity hydrogen and biofuel automobiles. Limitations and future perspectives of hydrogenasebased applications in H_(2) production and utilization with great impact are discussed. In addition, this review also provides a new perspective on the use of biohydrogen in healthcare beyond energy.
基金supported by the National Natural Science Foundation of China(21103121,21276187)Tianjin Municipal Natural Science Foundation(13JCQNJC05800)the Specialized Research Fund for the Doctoral Program of Higher Education(20121317110009)~~
文摘Two mono iron complexes Fe(CO)2PR3(NN) (R = Cy (3), Ph (4), NN = o-phenylenediamine dianion ligand, N2H2Ph2-) derived from the ligand substitution of Fe(CO)3hPR3 by the NN ligand were isolated and structurally characterized by single crystal X-ray diffraction. They have a similar first coordination sphere and oxidation state of the iron center as the [Fe]-hydrogenase active site, and can be a model of it IR demonstrated that the effect of the NN ligand on the coordinated CO stretch- ing frequencies was due to its excellent electron donating ability. The reversible protonation/deprotonation of the NN ligand was identified by infrared spectroscopy and density functional theory computation. The NN ligand is an effective proton acceptor as the internal base of the cysteine thiolate ligand in [Fe]-hydrogenase. The electrochemical properties of complexes 3, 4 were investigated by cyclic voltammograms. Complex 3 catalyzed the transfer hydrogenation of benzoquinone to hydroquinone effectively under mild conditions.
基金(in part) A Grant-in Aid for International Scientifi c ResearchSpecial Cancer Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan, No. 11137311Major International (Regional) Joint Research Projects from the National Natural Science Foundation of China (NSFC), No. 30320140461
文摘AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males. METHODS: A case-control study was conducted in 190 cases and 223 population-based controls. ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A)genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC). Information on smoking and drinking was collected and odds ratio (OR) was estimated. RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Signif icant interactions between ADH2, ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a signif icantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ADH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with the ALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele. CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also signifi cant gene-gene and gene- environment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.
文摘A component (s-factor) with obvious promoting effect on hydrogen evolution of hydrogenase has beenisolated and extracted from a Cell=free preparation of Spirulina platensis.The effect of the s-factor in the re-action system is similar to that of Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>, but is coupled with ligh. The s-factor has the maximumabsorption peak at 620 nm in the oxidized state, at 590 nm in the reduced state. The partially purifieds-factor showed two bands by SDS-PAGE and is distinctly different from phycocyanin,which has nochange of oxidized state and reduced state absorption spectra, and also has no promoting effect onhydrogenase of Spirulina platensis under the light.
文摘Photocatalytic reduction of CO2 to CO is a promising approach for storing solar energy in chemicals and mitigating the greenhouse effect of CO2.Our recent studies revealed that[(μ-bdt)Fe2(CO)6](1,bdt=benzene-1,2-dithiolato),a[FeFe]-hydrogenase model with a rigid and conjugate S-to-S bridge,was catalytically active for the selective photochemical reduction of CO2 to CO,while its analogous complex[(μ-edt)Fe2(CO)6](2,edt=ethane-1,2-dithiolato)was inactive.In this study,it was found that the turnover number of 1 for CO evolution reached 710 for the 1/[Ru(bpy)3]2+/BIH(BIH=1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]-imidazole)system under optimal conditions over 4.5 h of visible-light irradiation,with a turnover frequency of 7.12 min−1 in the first hour,a high selectivity of 97%for CO,and an internal quantum yield of 2.8%.Interestingly,the catalytic selectivity of 1 can be adjusted and even completely switched in a facile manner between the photochemical reductions of CO2 to CO and of protons to H2 simply by adding different amounts of triethanolamine to the catalytic system.The electron transfer in the photocatalytic system was studied by steady-state fluorescence and transient absorption spectroscopy,and a plausible mechanism for the photocatalytic reaction was proposed.
基金the NEDO's International Joint Research Grant Program and the National Science Foundation of China (No. 20573025) for the financial supports.
文摘Hydrogen evolution was detected in an artificial system composed of light-harvesting unit of purified photosystem I, catalyst of hydrogenase, methyl viologen and electron donor under radiation. Absorption spectral features confirmed that electron transfer from electron donors to proton was via a photoinduced reductive process of methyl viologen.
基金Sponsored by the Chinese Postdoctoral Science Foundation(Grant No.20070420861)the Heilongjiang Postdoctoral Fund(Grant No.LBH-Z07115)the National Natural Science Foundation of China(Grant No.31101316)
文摘A comparative evaluation of three different cell-disruption methods for the release of hydrogenase from H2 -producing bacterium E. harbinenase YUAN-3T was investigated. The cell disruption techniques evaluated in this study were uhrasonieation, high-speed homogenization and bead milling. Ultrasonication process was found to be the most effective method in terms of cell disruption. As for the specific activity of hydrogenase, there is no significant difference among the three kinds of methods. An orthogonal experiment L9 (34) was designed to optimize the procedures of ultrasonication for cell disruption. The optimized uhrasonication disruption conditions were the treatment at 250 W, 20 kHz, 30 s/15 s and 0. 30 g bacteria cell (dry weight) in 15 mL suspension buffer. As a result, the optimized conditions allow the hydrogenase to maintain the active form with the yield of 93.95 mg protein/g cell and the final activity of 0. 252 μmol/min/mg protein. In this work, we have developed and optimized an ultrasonication protocol for YUAN-3T cel]s, which is adapted to laboratory- scale release of hydrogenase proteins.
基金Sponsored by the the National High Technology Research and Development Program of China(Grant No.2006AA05Z109)Harbin Municipal Scienceand Technology Innovation Talents of Special Fund Projects(Grant No.2009RFXXS004)
文摘In order to evaluate the hydrogen-producing efficiency of anaerobic activated sludge in Anaerobic Baffled Reactor(ABR)fermentation processes,the optimal conditions for hydrogen producing hydrogenase method on methyl viologen(MV)assay was used to detect the hydrogen production activity of the activated sludge.The most favorable parameters such as 0.6 mL sodium acetate buffer(pH 5.0),100 μL lysozyme,0.2 mL sodium dibromoethane(9.0 mmol/L)and 0.7 mmol/L iron added into 1 mL activated sludge(2.66~26.64 gMLVSS/L)were found.Furthermore,reaction temperature and culture time were detected as 40 ℃ and 30 min respectively.Sodium thiosulfate and sodium sulfides were taken as the reducing agent while trichloroacetic acid as terminator.Under the MV optimal conditions,micro-toxic Dimethyl sulfoxide(DMSO)get higher security and better accuracy.The sensitivity of the detection methods(DMSO as electron carrier)was increased by more than 30%.The results show that the optimal conditions can be applied to measure hydrogenase activity correlating with its specific hydrogen production rate in a hydrogen-producing anaerobic activated sludge system.
基金This project was supported by the NNSFC (No. 20471061) and the Science & Technology Innovation Foundation for the Young Scholar of Fujian Province (No. 2005J059)
文摘A model compound for the active sites of Fe-only hydrogenases, [Fe2(SCH2)2N(3- PhCF3)(CO)6]2, has been synthesized and structurally characterized by single-crystal X-ray diffraction. It crystallizes in tetragonal, space group P43, with α = 12.6324(3), b = 12.6324(3), c = 24.0453(12) A, V = 3837.1(2) A^3, Z= 4, Fe4S4N2C30O12F6H16, Mr= 1062.09, Dc= 1.839 g/cm^3, μ(MoKα) = 1.791 mm^-1, F(000) = 2112, T= 293(2) K, Flack = 0.034(9), R = 0.0282 and wR = 0.0685 for 8148 observed reflections with I 〉 20(I). In the title compound, each Fet atom is coordinated by three terminal carbonyl C atoms (Fe-C: 1.783(3)- 1.816(3) A), two bridging S atoms (Fe-S: 2.2609(7)-2.2757(8) A) and another Fe atom (Fe-Fe 2.5011(5) A), adopting a distorted octahedral geometry with trans angles ranging from 152.45(11) to 157.77(10)°.
基金supported by the NNSFC(Nos.21231003 and 21203195)
文摘A new five-heterocyclic-biphosphine-substituted Fe-only hydrogenase mimic,[(μ-pdt)Fe_2(CO)_5]_2(PTP)(1),has been synthesized at room temperature. 1·H_2O crystallizes in triclinic system,space group P1,with a = 11.5897(4),b = 13.6156(4),c = 18.0333(6) ?,α = 76.306(3),β = 72.742(3),γ = 68.939(3)°,V = 2508.84(14) ?~3,Dc = 1.570 g/cm3,Z = 2,M_r = 1186.37,F(000) = 1204,the final R = 0.0748,and wR = 0.2012. In the tetranuclear complex 1·H_2O,each [2Fe_2S] butterfly unit is attached to one P atom of the diphosphine bridge and exhibits a square-pyramidal geometry. Complex 1 was characterized by elemental analysis,IR spectra,UV-vis absorption spectra,~1H-NMR and ^(31)P-NMR. The cyclic voltammetry behavior of compound 1 was investigated as well.
基金supported by the National Basic Research Program of China(973 Program2012CB821702)+1 种基金the National Natural Science Foundation of China(21233009 and 21173221)the State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences
文摘A new 2Fe2 S complex[(2-C5H4N)N(μ-CH2S)2Fe2(CO)6](1) related to the active site of[FeFe]-hydrogenase was obtained by treating(HS)2Fe2(CO)6 with(pyridin-2-ylazanediyl)dimethanol.Protonation occurred at the pyridine nitrogen atom when two equivalents of HBF4·OEt2acid were added to the toluene solution of 1,leading to the formation of[(2-C5H4NH)N(μ-CH2S)2Fe2(CO)6]·BF4·OEt2(1H~+),whose molecular structure was further established by singlecrystal X-ray analysis.Complex 1 crystallizes in the monoclinic system,space group P21/n with α=7.728(3),b = 11.825(4),c = 17.888(6) A,β= 92.968(5)°,while complex 1H~+ crystallizes in the triclinic system,space group P1 with a = 7.672(4),b = 10.382(5),c = 16.480(10) A,α=106.575(13),β= 93.18(3),γ=104.262(17)°.
文摘以Fe(CO)_(5)和含一个巯基的配体为原料,通过多步反应合成了两个新的[FeFe]氢化酶模拟物1和2;构建了以化合物1和2为光催化剂、藻红B钠盐(EBS^(2-))为光敏剂、三乙胺(TEA)为电子给体和质子源的三组分光催化产氢体系,该体系在pH值为12且体积比为1∶1的CH_(3)CN/H_(2)O溶液中,经可见光(λ>420 nm)照射4 h,最大产氢量为205.0μmol,相对于化合物2的催化转化数(TON)为51.4;研究表明,配体中含有较多的质子捕获位点,有利于形成产氢活性中间体H 2-2Fe2S(η2-H 2-Fe II Fe I)物种,从而提高催化剂的产氢活性,光生电子从1*EBS^(2-)化合物1和2的第一个电子的转移均为热力学可行过程,到化合物1和2的第二个电子转移是热力学不可行过程。